

Schwingungsdämpfungselemente

FERTIGUNG UND BERATUNG

Die Shorehärte der Gummimischung beeinflusst die Schwingungsdämpfungseigenschaften wesentlich

Professioneller Service von der Beratung bis zum Endprodukt

Unsere Experten beraten Sie von Beginn an, legen Einsatzbereiche und Ihre spezifischen Anforderungen fest und setzen Bearbeitungswünsche sowie Sonderanfertigungen für Sie um.

Anwendungsorientierte Beratung

Der Einsatz von Schwingungsdämpfungselementen hängt von verschiedenen Faktoren ab: Gewicht, erzeugende Frequenz und Umfeld der Maschine bestimmen, welches Element zum Einsatz kommt. Sie geben uns Ihre Anforderungen vor, wir wählen das geeignete Produkt für Sie aus.

Beratungsservice

Wir bohren, sägen und bearbeiten die Produkte so, dass sie Ihren individuellen Anforderungen gerecht werden. Zu unserem umfassenden Bearbeitungsservice zählen Produktmodifizierungen von Standardprodukten ebenso wie Sonderanfertigungen.

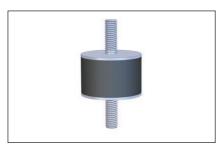
Lieferbereitschaft

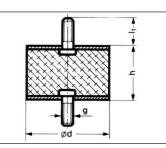
Wir haben eine Vielzahl an Schwingungsdämpfungselementen auf Lager und können so eine schnelle und zuverlässige Lieferung gewährleisten.

SCHWINGUNGS-DÄMPFUNGSELEMENTE

Schwingungen unter Kontrolle Unsere Schwingungsdämpfungselemente dämmen

Unsere Schwingungsdämpfungselemente dämmen Erschütterungen und Körperschall, isolieren Maschinenschwingungen und schützen vor Lärm. Sie sind funktional, flexibel und universell einsetzbar – überall dort, wo es um federnde Lagerungen in verschiedenen Bereichen des Maschinen-, Apparate- und Ingenieurbaus geht. Zahlreiche Größen und Ausführungen mit unterschiedlichen Metallteilausführungen und Shorehärten der Elastomere ergeben Konstruktionsmöglichkeiten für vielseitige Anwendungen.


Vielfalt – diverse Gummipuffer und Maschinenfüße werden für den Versand verarbeitet


INHALTSVERZEICHNIS

Gummi-Metall-Puffer	4
Gummi-Metall-Anschlag-Puffer	12
Gummi-Metall-Schienen	16
Gummi-Metall-Elemente	19
Gummi-Metall-Buchsen	23
Gummi-Metall-Rammpuffer	25
Kranpuffer-Anschlagpuffer	26
Maschinenfüße	27
Schwingmetall-Elemente	41
Reibräder	49
uftfederbälge	52
Elastomerfedern	56
Gummihohlfedern	62
Baulager	65
Fechnische Informationen	66

4 GUMMI-METALL-PUFFER 5

GM-Puffer Ausführung A

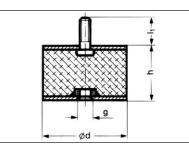
Material:

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 2x Außengewinde

Artikel-Nr.	Artikel-Nr.	Artikel-Nr.	Durchmesser	Höhe	Gewinde
weich	mittel	hart	mm	mm	g x l1
450620	450600	161230	8	8	M3x6
161260	161860	161990	10	10	M4x10
	10104306		10	15	M5x12
	10107287		12,5	10	M5x10
162080	162100	162130	15	8	M4x10
	450660		15	10	M4x10
	10112942		15	12	M6x15
10100141			15	15	M4x10/M4x8
162290	162310	161170	15	15	M4x13
	10105242		15	15	M5x8
162360	162520	162540	15	20	M4x13
1047490	1047480	1047470	15	30	M4x15
162610	162630	162650	18	8,5	M6x16
	10105127		20	8	M6x18
		10119538	20	12	M6x15
162660	162850	162880	20	15	M6x15
10100143	102000	102000	20	20	M6x10/M6x18
162910	162330	163120	20	20	M6x15
163360	163460	163560	20	25	M6x15
1048230	1048220	1048240	20	25	M6x18
163600	163630	163960	25	10	M6x18
164320	164380	164410	25	15	M6x18
163080	164470	164480	25	20	M6x18
103000	1134340	104400	25	25	M6x18
164500	164510	164560	25	30	M6x18
10-1000	10119722	104500	30	15	M8x12
64000		64010			
64900	64820	64910	30	15	M8x20
64830	64920	64840	30	20	M8x20
64890	10051813	65130	30	30	M8x20
65750	65760	164600	40	30	M8x23
164620	164700	164740	40	40	M8x23
404700	10118038	4040	40	50	M10x20
164790	164450	164910	50	20	M10x28
		1086630	50	20	M8x20
		10107495	50	30	M8x25
164930	164950	164970	50	30	M10x28
1047260	1047240	1047250	50	30	M10x33
		10107499	50	35	M8x28
164990	165070	165170	50	40	M10x28
165300	165350	165400	50	45	M10x28
1047190	1047180	1047200	50	45	M10x33
		10107496	50	50	M8x25
164840	165760	167030	50	50	M10x28
		10107497	60	60	M12x27
167050	167500	167940	70	45	M10x25
168210	168480	168490	75	25	M12x37
168500	168510	165590	75	40	M12x37

GM-Puffer Ausführung A


Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
168530	168550	168560	75	50	M12x37
168570	168580	168590	75	55	M12x37
168600	168770	168810	100	40	M16x45
168840	168520	168900	100	55	M16x45
		4677470	100	60	M16x45
	10110337		100	75	M12x43
1046510	1046520	1046530	100	75	M16x45

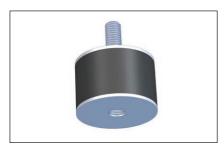
GM-Puffer Ausführung B

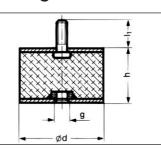
Material

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 1x Außen/Innengewinde

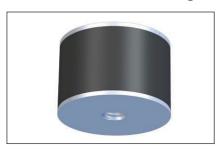
Artikel-Nr.	Artikel-Nr.	Artikel-Nr.	Durchmesser	Höhe	Gewinde
weich	mittel	hart	mm	mm	g x l1
168930	168950	168980	8	8	M3x6
10121502			10	10	M6x6
	10110112		10	10	M4x6
168990	169020	169050	10	10	M4x10
169140	169780	170080	15	15	M4x13
168880	452690	452040	15	20	M4x13
1047460	1047440	1047450	15	30	M4x15
	10112964		15	30	M5x13
	10119830		20	10	M6x18
152020	452030	452010	20	15	M6x15
452060	452080	452090	20	20	M6x15
	10119887		20	20	M6x18
152070	452100	452120	20	25	M6x15
1047390	1047410	1047400	20	25	M6x18
	10109707		20	30	M5x15
452160	452130	452140	25	15	M6x18
452150	10069667	452210	25	20	M6x18
452190	452200	452170	25	30	M6x18
	10013871		30	15	M8x10
	10039936		30	15	M8x20
452260			30	20	M8x20
452220	452230	452280	30	30	M8x20
	10051808		30	30	M8x23
	10114837		40	20	M8x23
452290	452300	452310	40	30	M8x23
	10120900		40	30	M8x28
	10121077		40	30	M10x28
	10120014		40	35	M8x23
452270	452350	452320	40	40	M8x23
452340	452360	452330	50	20	M10x28
452390	452370	452380	50	30	M10x28
1047230	1047210	1047220	50	30	M10x33

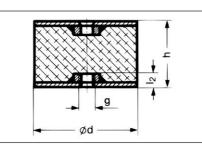




6 GUMMI-METALL-PUFFER GUMMI-METALL-PUFFER 7

Fortsetzung: GM-Puffer Ausführung B


Material:


Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 1x Außen/Innengewinde

Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
404420	452410	452400	50	40	M10x28
452430	452460	452440	50	45	M10x28
1047170	1047150	1047160	50	45	M10x33
452450	452420	452470	50	50	M10x28
452510	452480		70	45	M10x25
		452500	70	45	M10x30
452490	452530	452520	75	40	M12x37
452540	452560	452550	75	50	M12x37
452570	452600	452580	75	55	M12x37
452610	452590	452650	100	40	M16x45
452630	452660	452640	100	55	M16x45
452620	452720	452680	100	60	M16x45
1046480	1046490	1046500	100	75	M16x45

GM-Puffer Ausführung C

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

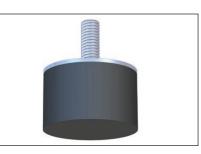
2x Innengewinde

Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l2
452670	452710	452740	8	8	M3x3
452750	452760	452730	10	10	M4x4
450820	450830	450840	10	15	M4x4
452770	458000	452850	13	26	M4x4
452780	452860	452840	15	15	M4x4
453390	454320	453440	15	20	M4x4
10110382	10115944		20	15	M6x6
453510	453450	453460	20	20	M6x6
453470	453480	453490	20	25	M6x6
453540	453550	453560	25	20	M6x6
453570	453580	453590	25	30	M6x6
453600	453610	453620	30	20	M8x8
	10115616		30	25	M8x8
453630	453640	453650	30	30	M8x8
153660	453670	453680	40	30	M8x8
153690	453760	453770	40	40	M8x8

Fortsetzung ⇒

GM-Puffer Ausführung C


Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x I2
110.011		nui t			9 A I
	10110883		50	25	M10×10
453780	453790	453800	50	30	M10×10
453810	453820	453830	50	40	M10×10
453840	453850	453860	50	45	M10×10
453870	453880	453890	50	50	M10×10
453900	453910	453920	70	45	M10×10
453930	453940	453960	75	40	M12x12
453970	453980	453990	75	50	M12x12
454000	454010	454020	75	55	M12x12
	10111064		100	55	M12x12
454030	454040	454050	100	55	M16x16
454060	454070	454080	100	60	M16x16
	10115630		100	70	M16x16
1046450	1046460	1046470	100	75	M16x16
		10001234	125	75	M16x16
454090	454100	454120	150	55	M16x16
454140	454130	454150	150	75	M16x16
1046420	1046430	1046440	200	100	M16x16
	10077629	10104624	200	100	M20x20

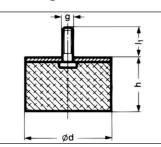

GM-Puffer Ausführung D

Material:

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 1x Außengewinde

Artikel-Nr.	Artikel-Nr.	Artikel-Nr.	Durchmesser	Höhe	Gewinde
weich	mittel	hart	mm	mm	g x l1
10123853	10120236	10124150	6	7	M3x6
	10116015		8	10	M4x10
	10116681		10	5	M4x10
	4060110		10	10	M4x10
	10123627		10	15	M4x10
	10119035		10	15	M5x10
	780520		15	6	M4x15
	10065570		15	8	M4x4
	10103340		15	8	M4x6
	10123572	10098328	15	8	M4x10
	4463410		15	10	M4x10
	10119238		15	10	M5x25
10099088	1047520	10106019	15	13	M4x13
	10045368		15	13	M4x12
	10098261		15	15	M4x13
	1047500		15	28	M4x13
10121853			16	7	M4x10
	10099496		16	10	M5x12
10099540		10106925	18	7,5	M6x16
		10122561	18	7,5	M6X18


Fortsetzung ⇒

Fortsetzung: GM-Puffer Ausführung D

Material:

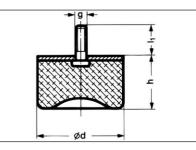
Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 1x Außengewinde

Artikel-Nr.	Artikel-Nr.	Artikel-Nr.	Durchmesser	Höhe	Gewinde
weich	mittel	hart	mm	mm	g x l1
	10109600		20	5	M6x18
	10122337		20	10	M5x12
10097415	10105639		20	10	M6x18
	10105661		20	10	M6x10
	10114657		20	10	M8x20
	10105181		20	12	M6x10
	10099544		20	12	M6x12
	10109891		20	12	M6x18
	10109895		20	13,5	M6x18
	10108455		20	13,5	M6x25
	4604140		20	15	M6x15
10095428	10043082		20	15	M6x18
	10117840		20	20	M6x15
	1134250		20	20	M6x18
	10109681		20	20	M8x10
	1047430		20	23	M6x20
		10111992	20	25	M6x8
	1048100		25	8	M6x18
	10081032		25	10	M6x10
	10104599		25	10	M8x23
	1048200		25	13	M6x18
10113595	10-10200		25	15	M6x18
10099503			25	15	M8x18
10033303	1047380		25	17	M6x18
	10026386		25	17	M8x15
	10114494		25	17	M8x23
	10119194		25	25	M6x10
				28	
	1047350		25 25	30	M6x18
	10035249				M6x18
	10120179		30	6	M8x20
	1032630		30	15	M8x27
	1134290		30	17	M8x20
	10111465		30	20	M8x23
	1127220	40000010	30	25	M8x20
	1047340	10026018	30	28	M8x20
	10108707		30	40	M8x20
	10013763		40	20	M8x23
	10112704		40	20	M10x28
	1047320		40	28	M8x23
	10110962		40	28	M8x33
	10090565		40	30	M10x23
	1047300		40	38	M8x23
	4626550		40	40	M8x23
	10105321		40	45	M10x25
	4343870		50	10	M10x10
	10122828		50	15	M10x25
	10109950		50	17	M10x23

Fortsetzung →

GM-Puffer Ausführung D

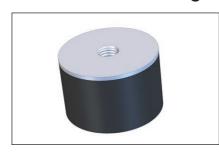

Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
	1047290	10007301	50	17	M10x28
	10042468	10110961	50	20	M10x28
		10110959	50	21	M10x28
	10105555		50	28	M10x18
	1047280		50	28	M10x33
	10115864		50	30	M10x28
	1125650		50	30	M10x33
	1048210		50	42	M10x33
	10108021		70	25	M10x28
	10115862		70	42	M10x72
		10103639	70	42	M10x28
	10119729		70	45	M10x28
	1134230		75	25	M12x37
	1047130		75	36	M12x37
	10096375		75	40	M12x37
	10115859		75	45	M10x28
	10113458		75	45	M12x37
	1047110		75	50	M12x37
	10119730	10011810	75	51	M12x37
	10107989		75	70	M12x37
	10114962		100	36	M16x43
	10116261		100	40	M16x41
	1046540		100	50	M16x45
	10045182		100	100	M16x43

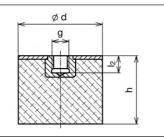
GM-Puffer Ausführung DS

Material:

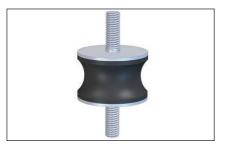
Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

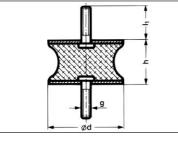
Ausführung: 1x Außengewinde




Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10124164	1047510	10124168	15	14	M4×13
10081733	1047420		20	23,5	M6x18
10093672	1047360	10093673	25	18,5	M6x18
	1047330		30	28,5	M8x20
	1047310		40	28,5	M8x23
	1047270	10122340	50	28	M10x33
	1047140		70	43	M10x30
	1047120		75	37	M12x37
	1047100		100	50	M16x45

GM-Puffer Ausführung E


Material:


Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 1x Innengewinde

Artikel-Nr. weich		rtikel-Nr. art	Durchmesser mm	Höhe mm	Gewinde g x l2
10123872	10075610 1	0046160	10	10	M4x4
	10109803		10	15	M4x4
10120646	926420		15	15	M4x4
	811530		20	13,5	M6x6
	4029490 1	045670	20	15	M6x6
	978200		20	20	M6x6
	1134270		20	25	M6x6
	10110487		25	12	M6x6
	994700		25	28	M6x6
	10107914		25	30	M6x6
	10025563		30	15	M8x8
	925910		30	20	M8x8
	10107426		30	20	M10×10
	1142330		30	25	M8x8
	627830		30	28	M8x8
	1134310		30	30	M8x8
	10120485		30	40	M8x8
	10117033		40	15	M8x8
	10108823		40	20	M10x10
	1134300		40	28	M8x8
	10117031		40	30	M8x8
	4002850		40	40	M10x10
	10016615		50	20	M10x10
	1	0106804	50	45	M10x10
	10025315		75	25	M12x12
	1062490		100	50	M16x16

GM-Puffer Ausführung TA

Material:

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 2x Außengewinde –

tailliert

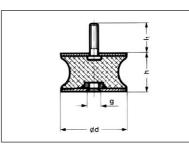
Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10124170	1044560	10124176	20	15	M6x18
	10026891		30	20	M8x15

Fortsetzung ⇒

GM-Puffer Ausführung TA

Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
	10119243		40	40	M10×20
	1044580		40	48	M8x23
10104133	1044590		50	30	M10x33
	1044600		75	40	M12x37
10097303	1044610		100	55	M16x45

GM-Puffer Ausführung TB


Material:

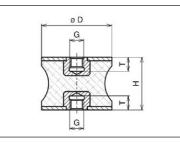
Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung: 1x

1x Außen/Innengewinde –

tailliert

Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10123011	10123013	10124178	25	20	M8x15
	10123012		30	25	M8x20
		10116616	50	35	M10x28

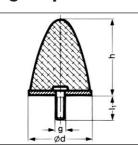

GM-Puffer Ausführung TC

Material

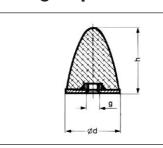
Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Ausführung:

2x Innengewinde – tailliert


Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10117388	10124180	10124181	20	30	M6x6
10114557	10114558	10114559	30	20	M8x8
10114561	10114562	10114563	30	25	M8x8
10114564	10114565	10114566	30	30	M8x8
10114567	10114568	10114570	40	30	M8x8
10114571	10114572	10114573	50	30	M10×10
	10115572		60	60	M10x10
	10114574		75	40	M12x12
	10114575		100	55	M16x16
	10114576		100	75	M16x16

GM-Anschlag-Puffer Ausführung PA parabel


Material:

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

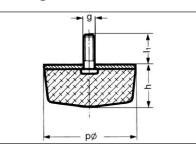
Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10123852	10119930	10124182	15	15	M4x10
	10092616		20	15	M5x10
10061752	1044470	10061751	20	24	M6x18
4308350	4032070	10103294	30	36	M8x20
	10033127		35	40	M8x23
	10046417	10111257	50	58	M10x28
	10026181		50	67	M8x36
	1044500		75	89	M12x37
	4183700		95	83	M16x43
	1044510		115	136	M16x43
	1045660		165	195	M16x45
	10082613		30	36	M8x8
	10035333		30	36	M8x12
	10122233		50	61	M8x28
	10121242		50	67	M10×20
	10121507		60	40	M14x63

GM-Anschlag-Puffer Ausführung PE parabel

Material:

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10124183	10116927	10124184	10	10	M5x5
	10116928		15	15	M4x4
	10116929		15	15	M5x5
	10116930		20	15	M6x6
10116931	10116932		20	24	M6x6
10116933	10116934	10116935	30	30	M8x8
	10116936		30	36	M8x8
	10116937	-	35	40	M8x8
		10116938	50	50	M10×10
	10116939		50	67	M8x8
	10116940		50	67	M10×10
	10116941		95	83	M16x16
	10116942		115	136	M16x16


GM-Anschlag-Puffer Ausführung KA

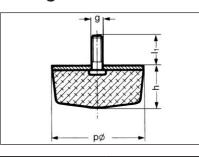
Material:

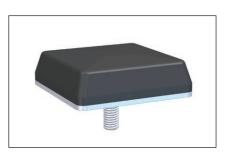
Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Bauform: rund

Ausführung: konisch rund

Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10124187	10111594	10124189	14	6	M4×10
	10100187		20	13	M6x10
1044640	1044620	1044630	25	17	M6x18
	10110713		45	21	M8x20
10123040	1044650	1044660	50	18	M10x28
1044730	1044710	1044720	125	45	M16x45

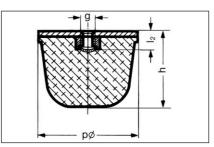

GM-Anschlag-Puffer Ausführung KV


Material

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Bauform: vierkant

Ausführung: konisch vierkant

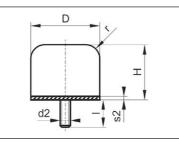


Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10124190	10116786	10124191	50	20	M10x28
1044700	1044680	1044690	80	25	M12x35

GM-Anschlag-Puffer Ausführung KE

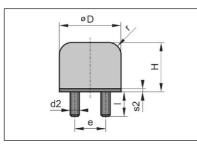
Material

Naturkautschuk (NK) wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.



Artikel-Nr. weich	Artikel-Nr. mittel	Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l2
10123015	1044520	10124192	50	35	M10x10
	1044530	10110210	80	60	M12x12
	1044540		125	90	M16x16

Speziell als Anschlag- oder Anfahrschutz bei Kranen konzipierte Puffer mit unterschiedlichen Möglichkeiten der Befestigung.


Material:

Naturkautschuk (NK) wahlweise in 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

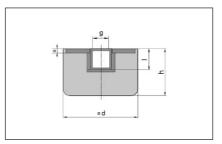
Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10105025	50	40	M10x28
10122376	63	50	M10x28
10112043	80	63	M12x37
10122378	100	80	M12x36
10109574	125	100	M16x36
10115379	125	100	M16x43

GM-Anschlag-Puffer Ausführung KR2

Speziell als Anschlag- oder Anfahrschutz bei Kranen konzipierte Puffer mit unterschiedlichen Möglichkeiten der Befesti-

Material:

Naturkautschuk (NK) 68° (hart) Shore. Toleranz +/- 5° Shore.

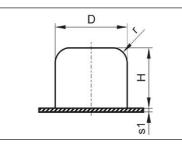

Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x l1
10116957	100	80	2x M12x36
10116959	125	100	2x M16x36
10116961	160	125	2x M16x44
10116963	200	160	2x M20x44
10106413	250	200	2x M20x47

GM-Anschlag-Puffer Ausführung KR3

Speziell als Anschlag- oder Anfahrschutz bei Kranen konzipierte Puffer mit unterschiedlichen Möglichkeiten der Befesti-

Material:

Naturkautschuk (NK) 68° (hart) Shore. Toleranz +/- 5° Shore.

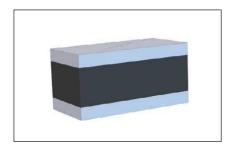


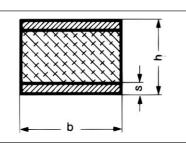
Artikel-Nr. hart	Durchmesser mm	Höhe mm	Gewinde g x I1
10115380	125	100	M16x16
10124290	160	125	M16x16
10124291	200	160	M20x20

GM-Anschlag-Puffer Ausführung KR4

Speziell als Anschlag- oder Anfahrschutz bei Kranen konzipierte Puffer mit unterschiedlichen Möglichkeiten der Befestigung. Material:

Naturkautschuk (NK) 68° (hart) Shore. Toleranz +/- 5° Shore.



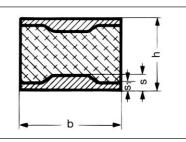


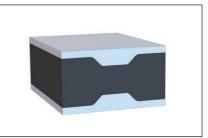
Artikel-Nr. hart	Durchmesser mm	Höhe mm	Grundplatte mm
10112522	40	32	50 x 50
10112525	50	40	63 x 63
10002750	63	50	80 x 80
10112526	80	63	100 x 100
10112528	100	80	125 x 125
10112529	125	100	160 x 160
10112532	160	125	200 x 200
10112533	200	160	250 x 250

Material:

Naturkautschuk wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore. Lieferbar in Orginallänge von 2000 mm

oder kurzfristig als Zuschnitt.


Artikel-Nr. mittel	Artikel-Nr. hart	Breite mm	Höhe mm	Länge mm	Stahlstärke S/S1 mm/mm
4388490	10110485	40	20	2000	5/5
4287310		40	35	2000	8/8
10064069		40	40	2000	10/10
	4371040	50	35	2000	5/5
10098611		50	35	2000	10/10
10107372		50	45	2000	5/5
4609840		50	45	2000	10/10
4609830		50	55	2000	10/10
10105273		50	70	2000	10/10
10094786		60	60	2000	10/10
10063388		70	30	2000	10/10
10066249		70	45	2000	10/10
10063386		70	55	2000	10/10
10028627		80	45	2000	10/10
10084121		80	80	2000	10/10
10074781		100	45	2000	15/15
10110858		100	50	2000	15/15
10095900		100	55	2000	15/15
10096365		100	60	2000	10/10
10063387		100	60	2000	15/15
1067660		100	70	2000	10/10
10049822		100	80	2000	15/15
10007070		120	60	2000	15/15
10044968		150	60	2000	15/15
10088329		150	80	2000	15/15
10044969		150	100	2000	15/15
10125003		200	70	2000	15/15
10044976		200	100	2000	15/15

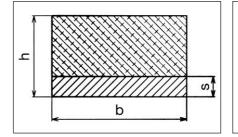

Gummi-Metall-Schienen AV

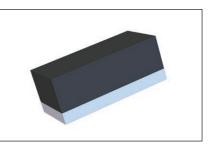
Material:

Naturkautschuk wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Lieferbar in Orginallänge von 2000 mm oder kurzfristig als Zuschnitt.

Artikel-Nr. mittel	Artikel-Nr. hart	Breite mm	Höhe mm	Länge mm	Stahlstärke S/S1 mm/mm
4388500	10124292	50	35	2000	5/10
10100543		50	45	2000	5/10
10100544	10115918	60	35	2000	5/11
10100541		60	60	2000	5/11
10100545		70	30	2000	5/12
10100547		70	45	2000	5/12
10098178		70	55	2000	5/12
10111529		100	45	2000	5/15
10110832		100	50	2000	5/15
10009947	10114426	100	60	2000	5/15
10044967		100	80	2000	5/15
10121192		55	50	2000	5/10

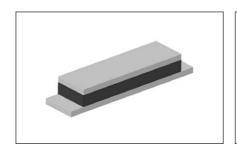

Gummi-Metall-Schienen F

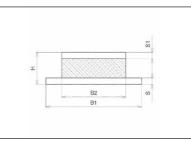

Material:

Naturkautschuk wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore.

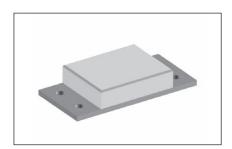
Toleranz +/- 5° Shore.

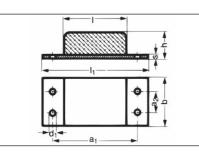
Lieferbar in Orginallänge von 2000 mm oder kurzfristig als Zuschnitt.




Artikel-Nr. mittel	Artikel-Nr. hart	Breite mm	Höhe mm	Länge mm	Stahlstärke S/S1 mm
4388510	10124491	40	20	2000	5
10101877		40	30	2000	10
	10116272	50	30	2000	10
10079831	10116274	50	40	2000	10
10039799		50	45	2000	5
10098572		50	50	2000	10
10108565		60	50	2000	10
10124569	10113479	70	50	2000	10
	10113480	70	55	2000	10

Gummi-Metall-Schienen C




Material:

Naturkautschuk wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore. Lieferbar in Orginallänge von 2000 mm oder kurzfristig als Zuschnitt.

Artikel-Nr. mittel	Artikel-Nr. hart	Breite mm	Höhe mm	Länge mm	Stahlstärke S/S1 mm/mm
10108623	10124494	50	40	200/150	8/12
10003433	10008035	50	40	270/220	8/12
10108626		60	100	470/230	15/15
10108631	10114425	60	100	480/230	15/15
10108632		60	100	550/430	15/15

Gummi-Metall-Schienen D

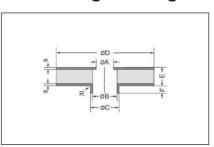
Material:

Naturkautschuk wahlweise in 43° (weich), 57° (mittel) und 68° (hart) Shore. Toleranz +/- 5° Shore.

Artikel-Nr. mittel	Breite mm	Höhe mm	Länge mm	
910300	130	35	50	
4193470	130	70	50	
10100882	200	45	100	
649550	200	80	100	
10100281	250	45	120	
10038194	250	70	120	
10100884	300	50	150	
10100885	300	80	150	

Gummi-Metall-Ringpuffer Ausführung RI - Ringelement

Als Zug-/Druckfederpaket zusammenstellbar, einfache Befestigung Einsatzbeispiele:

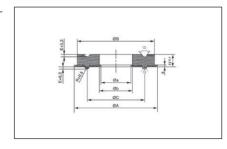

Lagerung von leichten bis mittelschweren Maschinen und Aggregaten, E- und Verbrennungsmotoren, Kabinen, Rohrleitungen und Geräteschränken.

Mögliche Belastungsarten/-richtungen ist Druck.

Hinweise:

Durch das Vorspannen zweier Ringpuffer gegeneinander ergibt sich insgesamt die doppelte Druck-Federsteifigkeit des einzelnen Ringpuffers.

Material: NK Shorehärte: mittel

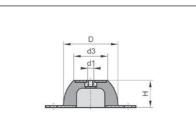


Artikel-Nr.	Außen Ø mm	Höhe mm	Innen Ø mm	Durchmesser mm	Stärke mm
10114744	36	10 / 6	6,2 / -	15	1,0
10100117	36	10 / 4	8,5 / 12,0	18	1,0
10114745	36	8/3	16,6 / -	20	1,0
10019952	41	8/3	15,5 / -	20	1,0
10114748	50	13 / 9,5	16,5 / 20,0	23	1,5
10114750	60	13 / 9,5	20,5 / 24,0	27	1,5

Gummi-Metall-Ringfeder Ausführung RF

Ringfedern werden bei der Montage vorgespannt und nehmen Zug- und Druckkräfte auf. Bei Federpaketen mit vielen Einzelelementen müssen Knickstützen eingesetzt und die ganze Federsäule geführt werden. Querkräfte können nicht oder nur in ganz geringem Maße aufgenommen werden.

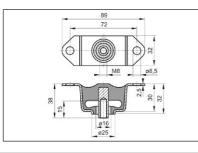
Material: NK Shorehärte: mittel


Artikel-Nr.	Außen Ø mm	Höhe mm	Innen Ø mm	
10119377	65	11,0	26	
10119380	110	20,8	30	
10119379	100	27,5	35	
10119381	110	16,0	40	
10119378	95	10,5	45	
10031331	130	16,0	55	
10119382	153	16,0	55	
10119383	210	20,0	55	
10119384	210	20,0	95	

Gummi-Metall-Hutelement Ausführung HK

Die Hutelemente sind sowohl in radialer als auch in axialer Richtung hochelastisch und bieten somit eine hervorragende Stoßisolation.

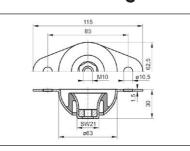
Die besondere Formgebung der Hutelemente ermöglicht die Schall- und Schwingungsisolation von Maschinen und Aggregaten mit einer niederen Eigenfrequenz. Sie sind speziell zur Lagerung von empfindlichen Instrumenten und Kleingeräten geeignet.


Die Elemente dürfen nicht auf Zug belastet werden.

Temperaturbeständig -30 ° C bis +80 °C. **Material:** NK, Härte 40° oder 60° Shore A.

Artikel-Nr.	Shorehärte	Höhe mm	Gewinde g x l1	Durchmesser mm	Belastung max N	
10121483	weich	20	M6	35	34	
10121489	mittel	20	M6	35	90	
10121490	weich	20	M8	40	60	
10121491	mittel	20	M8	40	120	
10121492	weich	25	M8	50	200	
10121493	mittel	25	M8	50	490	
10121494	weich	35	M10	70	390	
10121495	weich	40	M10	85	680	
10121496	mittel	40	M10	85	1450	
10121497	mittel	45	M10	90	2150	

Gummi-Metall-Deckenelement Ausführung DE

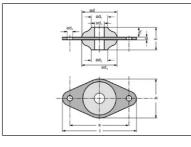


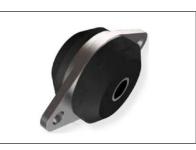
Deckenelemente ist ein reines Hängeelement und eignet sich besonders für die elastische Aufhängung von Beleuchtungskörpern, Apparaten und Rohrleitungen an Decken. Eine Abreißsicherung ist eingebaut.

Artikel-Nr.	Höhe mm	Gewinde g x l1	Länge mm	Breite mm	Form-Nr.
10122275	53	M8x15	98	32	Aussengewinde
10122278	53	M8	98	32	Innengewinde

Gummi-Metall-Glockenelement Ausführung GL

Glocken-Elemente eignen sich für Anwendungen, bei denen Masse (von 2 kg bis 70 kg) hängend gelagert werden sollen.

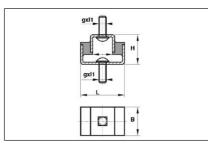


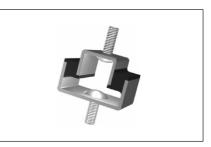

Artikel-Nr.	Shorehärte	Höhe mm	Gewinde	Länge mm	Breite mm
10108044	mittel	30	M10	115	62,5

Gummi-Metall-Flanschelement Ausführung FL

Flanschelemente

- dämpfen Erschütterungen und Körperschall
- isolieren Maschinenschwingungen
- reduzieren Beschleunigungen
- schützen vor Lärm



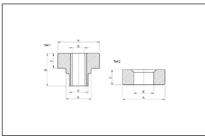


Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Ø Innenbuchse mm
10120034	weich	54	117	71	16
10096821	hart	49	117	71	16

Gummi-Metall-U-Lager Ausführung UL

U-Lager eignen sich zur stoßmindernden bzw. schwingungsisolierenden Lagerung von Apparaten und Geräten.

Artikel-Nr.	Höhe	Gewinde	Länge	Breite
	mm	g x l1	mm	mm
10122279	36	M8x21	35	52

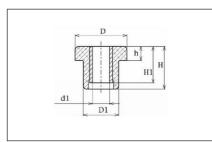


22 GUMMI-METALL-ELEMENTE GUMMI-METALL-BUCHSEN 23

Gummi-Metall-Isolierhülse Ausführung IH - Two-Piece Mounts

GM-Isolierhülse wurden für Anwendungen mit schweren dynamischen Kräfte sowohl in der statischen und der Rückprallrichtung entwickelt. Bewegung in beide Richtungen wird durch Bauart begrenzt.

Die Hülse wird für Motoren, Fahrerhäuser und Nebenaggregate verwendet. GM-Isolierhülse isoliert Schwingungen und absorbiert Schock.


Material: - NR - mittel - schwarz - CR - mittel - schwarz mit Punkt blau

Shorehärte: mittel

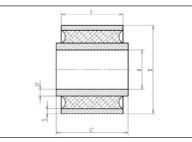
Artikel-Nr.	Außen Ø mm	Länge mm	Innen Ø mm	Blechdicke mm	Material	Belastung
10115283	32	27	10,0	4,0	NR	350 N auf 0,6 mm
10116876	32	32	10,0	6,0	CR	1000 N auf 0,6 mm
10116877	48	50	13,0	10,0	NR	1700 N auf 0,6 mm
10115287	48	49	13,5	10,5	CR	850 N auf 1,0 mm
10115288	65	62	16,5	15,5	CR	2500 N auf 1,2 mm
10116878	64	62	17,0	16,0	CR	3800 N auf 1,2 mm
10115289	88	73	24,0	22,0	NR	3800 N auf 1,3 mm
10116879	89	73	24,0	23,0	CR	5100 N auf 1,3 mm
10115290	124	86	27,0	32,0	NR	3800 N auf 1,3 mm
10116880	124	86	27,0	22,0	NR	15800 N auf 1,3 mm

Gummi-Metall-Isolierhülse Ausführung IZ - Bush Mounts

Bewegung in beide Richtungen wird durch Bauart begrenzt.

Die Hülse wird für Motoren, Fahrerhäuser und Nebenaggregate verwendet. GM-Isolierhülse isoliert Schwingungen und absorbiert Schock.

Material: NR

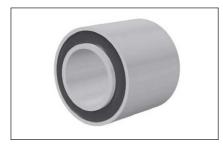

Artikel-Nr.	Außen Ø mm	Länge mm	Ø Innenbuchse mm	Blechdicke mm	Belastung
10121877	28	6/26	21	8	420 N auf 0,6 mm
10121878	44	10/32	32	10	1500 N auf 1,0 mm
10121879	50	14/41	34	16	2000 N auf 1,5 mm
10121864	63	16/38	41	19	2800 N auf 1,8 mm
10121881	95	20/63	57	20	7900 N auf 3,3 mm

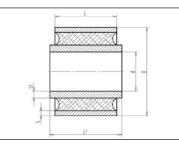
Gummi-Metall-Buchsen

Gummielastische Lagerungen, vorwiegend für den Einsatz im Fahrzeug- und Maschinenbau.

Diese Elemente können radial, axial und auf Verdrehung beansprucht werden, ohne dass sich der Gummi gegenüber den Metallteilen verschiebt.

Material: Standardqualität NK (Naturkautschuk) 50-60 Shore A


		Ø Innenbuchse	Länge Innenbuchse	Ø Außenbuchse	Länge Aussenbuchse
Artikel-Nr.	Shorehärte	mm	mm	mm	mm
10100748	mittel	8	17	16	15
10106191	mittel	8	28	16	25
10106192	mittel	8	17	20	15
10106193	mittel	8	16	22	10
10106194	mittel	10	20	18	18
10106195	mittel	10	24	20	20
10106196	mittel	10	17	22	15
10106197	mittel	10	24	22	18
10106198	mittel	10	26	22	20
10106199	mittel	10	30	22	25
10106200	mittel	10	33	22	30
10106201	mittel	10	17	24	14
10106202	mittel	10	24	25	20
10106204	mittel	10	34	25	30
10106206	mittel	10	51	27	45
10106207	mittel	10	27	28	20
10106208	mittel	12	24	22	18
10106209	mittel	12	24	22	22
10106210	mittel	12	38	24	35
10106211	mittel	12	28	25	25
10106212	mittel	12	36	25	32
10106213	mittel	12	38	25	35
10106214	mittel	12	24	26	17
10106215	mittel	12	24	26	17,5
10106216	mittel	12	24	26	18
10106217	mittel	12	24	26	20
10106218	mittel	12	36	26	32
10106219	mittel	12	36	26	32
10106220	mittel	12	51	27	45
10106221	mittel	12	68	27	60
10106222	mittel	12	80	27	74
10106223	mittel	12	28	30	25
10106224	mittel	12	34	30	28
10100796	weich	12	40	30	36
10106225	mittel	12	44	30	34
10106226	mittel	12	40	30	36
10106227	mittel	12	44	30	39
10106228	mittel	12	51	30	48
10106230	mittel	12	38	36	30
10106231	mittel	13	40	30	40
10106232	mittel	14	48	27	40
10106233	mittel	14	33	28	30
10106234	mittel	14	28	30	25
10106235	mittel	14	76	30	67
10106236	mittel	14	40	34	32
10106241	mittel	14	45	46	37
10106238	mittel	14,2	81	38	73


Fortsetzung ⇒

Fortsetzung: Gummi-Metall-Buchsen

Gummielastische Lagerungen, vorwiegend für den Einsatz im Fahrzeug- und Maschinenbau.

Diese Elemente können radial, axial und auf Verdrehung beansprucht werden, ohne dass sich der Gummi gegenüber den Metallteilen verschiebt.

Material: Standardqualität NK (Naturkautschuk) 50-60 Shore A

Artikel-Nr.	Shorehärte	Ø Innenbuchse mm	Länge Innenbuchse mm	Ø Außenbuchse mm	Länge Aussenbuchse mm
10106240	mittel	14,2	116	38	107
10106243	mittel	14,2	81	50	73
10106237	mittel	14,25	71	38	63
10106242	mittel	14,25	71	50	63
10106244	mittel	16	17	32	16
10106245	mittel	16	28	32	25
10106246	mittel	16	32	35	28
10105470	mittel	16	54	36	50
10106247	mittel	16	62	40	58
10106248	mittel	16	38	50	32
10106249	mittel	16	38	34	32
10106250	mittel	17	71	34	63
10106251	mittel	18	36	34	32
10106252	mittel	18	42	34	36
10106253	mittel	18	71	46	65
10106254	mittel	18,2	65	46	60
10106256	mittel	18,2	81	46	73
10106255	mittel	18,25	71	38	63
10106257	mittel	20	76	41	70
10101842	mittel	20	38	44	42
10106258	mittel	20	42	45	38
10097104	mittel	20	30	45	30
10106259	mittel	20	46	45	40
10106261	mittel	20	62	45	55
10106262	mittel	20	62,5	45	59,5
10106263	mittel	20	70	40,5	64
10106264	mittel	22	40	45	32
10106265	mittel	22	50	50	40
10106266	mittel	24,3	81	50	78
10106267	mittel	24,3	101	40	98
10106268	mittel	25	40	45	40
10106268		25	56		50
10106269	mittel mittel	25		50 50	65,5
10106271	mittel	25	67,5 85	55	80
10105272		25	93,5	63	89,5
10105579	mittel	26	45	40	40
10097109	mittel	27	39,5	48	36,8
10106273	mittel mittel	27,8	67	50	60
10106273		30	66	52	60
	mittel		45	55	45
10097108	mittel	30			
10106275	mittel	30	94	60	89,5
10106276	mittel	30	68	60	60
10106277	mittel	30	85	60	80
10097110	mittel	30	70	65	70
10097112	mittel	30	70	70	70
10106278	mittel	32	55	56	50
10106279	mittel	38	60	66	60

Fortsetzung →

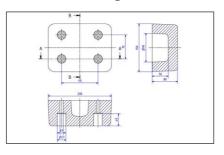
Gummi-Metall-Buchsen

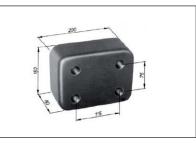
Artikel-Nr.	Shorehärte	Ø Innenbuchse mm	Länge Innenbuchse mm	Ø Außenbuchse mm	Länge Aussenbuchse mm
10106280	mittel	40	70	75	57
10106281	mittel	40	88	75	80
10106283	mittel	40	126	105	110
10106282	mittel	45	100	75	90
10106284	mittel	50	60	70	60
10106286	mittel	50	100	80	95
10106285	mittel	50	110	80	100
10106287	mittel	50	110	100	100
10106289	mittel	50	195	125	138
10106290	mittel	50	195	125	180
10106291	mittel	80	120	140	110
10106292	mittel	100	120	140	110
10106145	mittel	100	140	165	130

Gummi-Metall-Rammpuffer Ausführung RP2 - Anfahrtschutz

Dieser robuste Gummipuffer wird als Anfahrschutz für Verladerampen eingesetzt, an Überladebrücken und Wechselbrücken.

Material: NK Shorehärte: hart




Artikel-Nr.	Höhe mm	Länge mm	Breite mm	Lochabstand mm
10116509	80	500	250	je 250
10116510	90	500	250	je 250
10116511	100	500	250	je 250
10116512	140	500	250	je 250

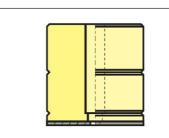
Gummi-Metall-Rammpuffer Ausführung RP5 - Truck

Rammpuffer mit 4-Loch-Befestigung für die Anbringung an LKW's und Transportfahrzeugen als Anfahrschutz, für den Einsatz im Nutzfahrzeugbau und als Anprallschutz an Rampen und Gebäuden

Shorehärte: hart

Artikel-Nr.	Höhe mm	Länge mm	Breite mm	Lochabstand mm	Material
10027635	80	200	150	115/75	NK
10123628	80	200	150	115/75	EPDM

Gummi-Industrie-Fender - Anfahrschutz



Zur Anbringung an Verladerampen. Material: EPDM, schwarz, sehr verschleißfeste Qualität.

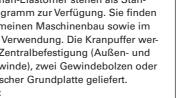
Artikel-Nr.	Breite Gummi mm	Höhe mm	Länge mm	Belastung	Lochabstand mm	Stärke mm	
4075100	80	80	540	leicht	460	7	
4075110	80	80	540	schwer	460	14	

PU-Aufsetzpuffer-Puffer Ausführung KZA1

Anschlagpuffer aus zelligem Polyurethan für den Aufzugbau

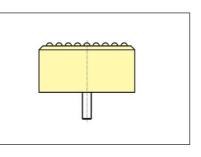
zelliges Polyurethan bietet ausgezeichnete Elastizität bei hervorragender Öl-, Benzin, Ozon und Alterungsbeständigkeit, Temperaturbereich -40°C bis +80°C

Auswahl: Die Festlegung der erforderlichen Puffergröße erfolgt typischerweise nach dem Energieaufnahmevermögen abhängig von der dynamischer Belastung.


Material:

Elastomer: zelliges Polyurethan-Elastomer Raumdichte 0,53 g/cm³ Metallteile: Stahl, blank

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max kN	Innen Ø mm	Bohrung mm
10111367	80	80	7,0	35	17
10111368	100	160	23,9	35	17
10111369	125	80	15,4	35	17
10111365	125	100	39,9	35	17
10111371	140	200	46,9	35	17
10111372	165	80	26,5	35	17


PU-Kranpuffer Ausführung KZP2

Anschlagpuffer aus dem mikrozelligen Polyurethan-Elastomer stehen als Standard-Programm zur Verfügung. Sie finden im allgemeinen Maschinenbau sowie im Kranbau Verwendung. Die Kranpuffer werden mit Zentralbefestigung (Außen- und Innengewinde), zwei Gewindebolzen oder quadratischer Grundplatte geliefert.

Elastomer: zelliges Polyurethan-Elastomer Raumdichte 0,53 g/cm³

Metallteile: Stahl, blank

Artikel-Nr.	Durchmesser mm	Höhe mm	Gewinde g x I1	Belastung max kN	
10013867	80	80	M12x35	40	
10120283	100	100	M12x35	63	
10120230	125	125	M12x35	100	
10121030	160	160	M12x35	160	

Maschinenfuß MS/MA oval 2-Loch

Maschinenfüße können:

- Schwingungen isolieren
- Erschütterungen absorbieren
- Körperschall dämmen

Von nicht elastisch gelagerten Maschinen werden Schwingungen auch an Gebäude abgestrahlt. Gebäude lassen sich oft leicht anregen.

Maschinenfüße dämmen diese Schwingungen wirkungsvoll.

MS - Maschinenfuß ohne Abreißsicherung

MA - Maschinenfuß mit Abreißsicherung

Artikel-Nr.	Höhe mm	Gewinde	Länge mm	Abreisssicherung	Ausführung	Belastung max. kg
10111440	23	M8	81	nein	MS	95
10119679	30	M10	106	ja	MA	125
10017639	30	M10	128	nein	MS	175
10113659	30	M10	128	ja	MA	175
10122232	39	M12	170	nein	MS	150
10010615	39	M12	170	nein	MS	280
10113663	39	M12	170	ja	MA	280
10100715	52	M16	216	nein	MS	650
10113665	52	M16	216	ja	MA	650

Maschinenfuß MS/MA eckig 4-Loch

- Maschinenfüße können:
- Schwingungen isolieren
- Erschütterungen absorbieren
- Körperschall dämmen

Von nicht elastisch gelagerten Maschinen werden Schwingungen auch an Gebäude abgestrahlt.

Maschinenfüße dämmen diese Schwingungen wirkungsvoll.

MS - Maschinenfuß ohne Abreißsicherung

MA - Maschinenfuß mit Abreißsicherung

Artikel-Nr.	Höhe mm	Gewinde	Länge_x_Breite mm	Abreisssicherung	Ausführung	Belastung max. kg
10098098	40	M12	108 x 108	nein	MS	500
10045676	52	M16	168 x 168	nein	MS	650
10125016	52	M16	168 x 168	nein	MS	1000
10113667	52	M16	168 x 168	ja	MA	650
10114924	63	M20	184 x 184	nein	MS	750
10100204	63	M20	184 x 184	nein	MS	1250
10113668	63	M20	184 x 184	ja	MA	1250
10116785	63	M20	184 x 184	ja	MA	1900

Maschinenfuß MAD oval 2-Loch

Wirksame Schwingungs- und Geräuschisolierung verschiedenster Maschinen mit Drehbewegungen, wie z.B.

- Dieselmotoren, Pumpen, Verbrennungsmotoren, Industriegeneratoren, - Notstromaggregate
- Weitere Produktvorteile:
- Sehr gute Kombination zwischen Druck- und Schubbeanspruchung
- mit Abreißsicherung

Artikel-Nr.	Höhe mm	Gewinde	Abmessung mm	Belastung max. kg	
10112371	34	M12	93	70	
10112372	34	M12	93	110	
10112373	34	M12	93	130	

Maschinenfuß Levelmount® LM

EFFBE-Levelmount® steht für Elemente zur schwingungs- und stoßisolierenden Maschinenaufstellung.

Das bewährte Produktprogramm deckt die Anforderungen an die Eigenfrequenz der Lagerung von 1,5 Hz aufwärts nahezu lückenlos ab.

Artikel-Nr.	Durchmesser mm	Höhe mm	Nivellierhöhe mm	Gewinde	Belastung max. kg	Hersteller- bezeichnung
10100402	40	15	5	M5	75	LM 0-4
10100403	80	30	15	M10	150	LM 1-2
10100404	80	30	15	M10	220	LM 1-4
10097934	80	30	15	M10	380	LM 1-6
68460	80	25	15	M10	480	LM 1-11
10100405	120	37	20	M12	400	LM 3-6
10095872	120	37	20	M12	650	LM 3-11
10100406	120	37	20	M12	900	LM 3-25
68470	120	32	20	M12	1200	LM 3-33
10100407	160	41	20	M16x1,5	1100	LM 5-27
10100408	160	41	20	M16x1,5	1600	LM 5-42
68480	160	35	20	M16x1,5	3000	LM 5-55
10100409	185	45	20	M20x1,5	2500	LM 6-60
68490	185	39	20	M20x1,5	4000	LM 6-66
10100410	185	45	20	M20x1,5	3500	LM 6-80
68500	238	54	20	M24x1,5	7000	LM 7-77
10100412	238	60	20	M24x1,5	6400	LM 7-100
10100418	238	60	20	M24x1,5	7000	LM 7-150
10095146	315	70	30	M30x2	8000	LM 8-200
68510	315	70	30	M30x2	10000	LM 8-250
10100421	315	70	30	M30x2	11000	LM 8-300

Maschinenfuß Levelmount® LM-BA

EFFBE-Levelmount® steht für Elemente zur schwingungs- und stoßisolierenden Maschinenaufstellung.

Das bewährte Produktprogramm deckt die Anforderungen an die Eigenfrequenz der Lagerung von 1,5 Hz aufwärts nahezu lückenlos ab.

Artikel-Nr.	Durchmesser mm	Höhe mm	Nivellierhöhe mm	Gewinde	Belastung max. kg	Hersteller- bezeichnung
10100751	80	30	15	M10	150	LM 1-2 BA
10100752	80	30	15	M10	220	LM 1-4 BA
10080993	80	37	15	M10	380	LM 1-6 BA
10100753	120	37	20	M10	400	LM 3-6 BA
10100754	120	37	20	M10	650	LM 3-11 BA
4226970	120	37	20	M10	900	LM 3-25 BA
10100755	160	41	20	M16	1100	LM 5-27 BA
10100757	160	41	20	M16	1600	LM 5-42 BA

Fortsetzung →

Fortsetzung: Maschinenfuß Levelmount® LM-BA

EFFBE-Levelmount® steht für Elemente zur schwingungs- und stoßisolierenden Maschinenaufstellung.

Das bewährte Produktprogramm deckt die Anforderungen an die Eigenfrequenz der Lagerung von 1,5 Hz aufwärts nahezu lückenlos ab.

Artikel-Nr.	Durchmesser mm	Höhe mm	Nivellierhöhe mm	Gewinde	Belastung max. kg	Hersteller- bezeichnung
10100758	185	45	20	M20	2500	LM 6-60 BA
10100759	185	45	20	M20	3500	LM 6-80 BA
10100760	238	60	20	M30	6400	LM 7-100 BA
10100761	238	60	20	M30	7000	LM 7-150 BA

Maschinenfuß MC

Mit der Typenreihe Cup Mount (CP) ist eine universal einsetzbare Baureihe von Elementen verfügbar.

Die abrisssichere Konstruktion erlaubt die Belastung des Elementes nicht nur auf Druck und Zug, sondern auch auf Schub/Scherung.

Diese Elemente finden vielfach Verwendung als Lagerungselemente von Maschinen, Geräten und Aggregaten im stationären, als auch mobilen Einsatz.

Artikel-Nr.	Durchmesser mm	Höhe mm	Gewinde	Belastung max. kg	Herstellerbezeichnung
10101604	58	28	M6	15	CP C1010
10101605	58	28	M6	35	CP C1015
10096716	58	28	M6	60	CP C1035
10101607	58	28	M6	100	CP C1050
10101608	76	38	M10	35	CP C2020
10101610	76	38	M10	60	CP C2040
10094387	76	38	M10	90	CP C2060
10094389	76	38	M10	200	CP C2090
10097410	76	38	M10	250	CP C2125
10101613	124	63	M16	250	CP C4100
10101614	124	63	M16	350	CP C4135
10101615	124	63	M16	500	CP C4200
10053418	124	63	M16	750	CP C4300

Maschinenfuß Levelmount® HPRSF-G

Aufbau: Elastomer-Metall-Kombination mit beweglicher Befestigungs- und Nivellierspindel

Eigenschaften: rutschfest, körperschalldämmend schwingungsisolierend

Belastungsbereich 3kN - 30kN, Eigenfrequenz (stat.) > 15 Hz, Neigungsausgleich bis 15° Anwendungsbereich: verankerungsfreie, rutschfeste Aufstellung von Maschinen und

Werkstoffe: Elastomerkörper aus Nitrilkautschuk (NBR) - Härte 70 Sh A, hoher Elastizität, öl- und alterungsbeständig

Metallteile aus Stahl verchromt bzw. verzinkt

Nivellierung: Nivellierung über Gewindespindel

Lieferumfang: Element mit Nivellierspindel, 2 Muttern und 2 U-Scheiben

Artikel-Nr.	Durchmesser mm	Spindelmaß g x l	Höhe1_/_ Höhe2 mm	Belastung max. kg	Herstellerbezeichnung
10100941	50	M20x100	14 / 42	300	HPRSF-G 50
10100942	80	M20x100	17 / 45	850	HPRSF-G 80
10122811	100	M16x150	19 / 47	3000	HPRSF-G 100
10122812	100	M16x200	19 / 47	3000	HPRSF-G 100
10100943	100	M20x100	19 / 47	2000	HPRSF-G 100
10122686	125	M16x150	19 / 47	3000	HPRSF-G 125
10122687	125	M16x200	19 / 47	3000	HPRSF-G 125
10100944	125	M20x100	19 / 47	3000	HPRSF-G 125

Teller für Gelenkstellfüße MP1 - Kunststoff

Kunststoff PA, ohne Anschraubbohrungen Nylon PA

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten

Kunststoff PA, Farbe schwarz Kugelgelenk, Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10075012	30	18	500
10075020	40	18	900
10075021	45	18	900
10075022	50	18	900
10075023	60	18	900
10075024	80	18	900
10075025	100	18	900

Teller für Gelenkstellfüße MP1 - Kunststoff mit Anti-Slip-Platte

Kunststoff PA, ohne Anschraubbohrungen Nylon PA

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten,

die Anti-Slip-Platte verhindert das Verrutschen von Stellfüßen auf glatten Industrieböden und kann Vibrationen dämpfen

Kunststoff PA, Farbe schwarz / thermoplastisches Elastomer

Eigenschaften:

beständig gegen Öl und Wasser (bis 60° C)

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10075026	30	18	500
10075027	50	18	900
10075028	45	18	900
10075029	50	18	900
10075030	60	18	900
10075031	80	18	900
10075032	100	18	900

Teller für Gelenkstellfüße MP1 - Zinkguss

Zinkdruckguss, ohne Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten

Zinkdruckguss, Farbe schwarz pulverbeschichtet

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110583	30	18	2000
10110584	40	18	3000
10110585	45	18	3000
10110586	50	18	3000
10110588	60	18	3000
10110589	80	18	3000
10110590	100	18	3500
10110591	120	18	3500

Teller für Gelenkstellfüße MP1 - Zinkguss mit Anti-Slip-Platte

Zinkdruckguss, ohne Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten, die Anti-Slip-Platte verhindert das Verrutschen von Stellfüßen auf glatten Industrieböden

und kann Vibrationen dämpfen

Zinkdruckguss, Farbe schwarz pulverbeschichtet / thermoplastisches Elastomer

Eigenschaften: beständig gegen Öl und Wasser (bis 60° C)

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110592	30	18	2000
10110593	40	18	3000
10110594	45	18	3000
10110595	50	18	3000
10110596	60	18	3000
10110598	80	18	3000
10110599	100	18	3500
10110600	120	18	3500

Teller für Gelenkstellfüße MP1 - Edelstahl

Edelstahl, ohne Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten

Material:

Edelstahl (1.4305), Farbe blank

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110610	30	18	2000
10110612	40	18	3000
10110613	45	18	3000
10110614	50	18	3500
10110615	60	18	3500
10110616	80	18	3500
10110617	100	18	4000
10110618	120	18	4000

Teller für Gelenkstellfüße MP1 - Edelstahl mit Anti-Slip-Platte

Edelstahl, ohne Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten,

die Anti-Slip-Platte verhindert das Verrutschen von Stellfüßen auf glatten Industrieböden und kann Vibrationen dämpfen

Edelstahl (1.4305) Farbe blank / Material thermoplastisches Elastomer

Eigenschaften beständig gegen Öl und Wasser (bis 60° C)

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110619	30	18	2000
10110620	40	18	3000
10110621	45	18	3000
10110622	50	18	3500
10110623	60	18	3500
10110625	80	18	3500
10110627	100	18	4000
10110628	120	18	4000

Teller für Gelenkstellfüße MP2 - Kunststoff

Kunststoff PA, mit Anschraubbohrungen Nylon PA

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten

Material:

Kunststoff PA, Farbe schwarz

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110573	80	18	900
10110577	100	18	900
10110578	120	18	900

Teller für Gelenkstellfüße MP2 - Kunststoff mit Anti-Slip-Platte

Kunststoff PA, ohne Anschraubbohrungen Nylon PA

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten,

die Anti-Slip-Platte verhindert das Verrutschen von Stellfüßen auf glatten Industrieböden und kann Vibrationen dämpfen

Kunststoff PA, Farbe schwarz / thermoplastisches Elastomer

Eigenschaften beständig gegen Öl und Wasser (bis 60° C)

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110579	80	18	900
10110581	100	18	900
10110582	120	18	900

Teller für Gelenkstellfüße MP2 - Zinkguss

Zinkdruckguss, mit Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten

Zinkdruckguss, Farbe schwarz pulverbeschichtet

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110601	6	18	3000
10110603	80	18	3000
10110604	100	18	3500
10110605	120	18	3500

Teller für Gelenkstellfüße MP2 - Zinkguss mit Anti-Slip-Platte

Zinkdruckguss, mit Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten,

die Anti-Slip-Platte verhindert das Verrutschen von Stellfüßen auf glatten Industrieböden und kann Vibrationen dämpfen

Zinkdruckguss, Farbe schwarz pulverbeschichtet / thermoplastisches Elastomer Eigenschaften beständig gegen Öl und Wasser (bis 60° C)

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110606	60	18	3000
10110607	80	18	3000
10110608	100	18	3500
10110609	120	18	3500

Teller für Gelenkstellfüße MP2 - Edelstahl

Edelstahl, mit Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten

Material:

Edelstahl (1.4305), Farbe blank

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110629	80	18	3500
10110630	100	18	4000
10110631	120	18	4000

Teller für Gelenkstellfüße MP2 - Edelstahl mit Anti-Slip-Platte

Edelstahl, mit Anschraubbohrungen

Beschreibung:

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten,

die Anti-Slip-Platte verhindert das Verrutschen von Stellfüßen auf glatten Industrieböden und kann Vibrationen dämpfen

Edelstahl (1.4305), Farbe blank / thermoplastisches Elastomer

Eigenschaften beständig gegen Öl und Wasser (bis 60° C)

Kugelgelenk Schwenkbereich ±20°

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung
10110632	80	18	3500
10110633	100	18	4000
10110634	120	18	4000

Maschinenfuß-Spindel Stahl

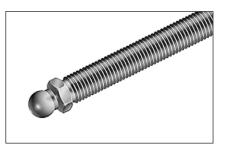
Gewindestange für Gelenkstellfüße MP1, MP2, MP3

Kugelgelenk 15 mm, Schwenkbereich ±20°

Artikel-Nr.	Höhe mm	Gewinde g x l	Schlüsselweite mm	Ø Kugel mm	Belastung max. kg
10110430	7,5	M10x45	14	15	470
10110438	7,5	M10x90	14	15	470
10110439	7,5	M10x150	14	15	470
10110441	7,5	M12x100	14	15	770
10110446	7,5	M12x125	14	15	770

Fortsetzung ⇒

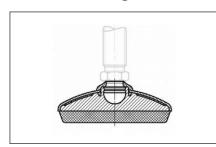
Maschinenfuß-Spindel Stahl


Artikel-Nr.	Höhe mm	Gewinde g x l	Schlüsselweite mm	Ø Kugel mm	Belastung max. kg
10110448	7,5	M12x150	14	15	770
10110449	7,5	M16x66	17	15	1450
10110451	7,5	M16x100	17	15	1450
10119462	7,5	M16x125	17	15	1450
10110452	7,5	M16x150	17	15	1450
10122037	7,5	M16x200	17	15	1450
10110454	10,5	M20x85	22	15	2430
10110455	10,5	M20x100	22	15	2430
10119461	10,5	M20x125	22	15	2430
10110456	10,5	M20x150	22	15	2430

Maschinenfuß-Spindel Edelstahl

Gewindestange für Gelenkstellfüße MP1, MP2, MP3 Material:

Edelstahl 1.4301t


Kugelgelenk 15 mm, Schwenkbereich ±20°

Artikel-Nr.	Höhe mm	Gewinde g x l	Schlüsselweite mm	Ø Kugel mm	Belastung max. kg
10110457	7,5	M10x45	14	15	470
10110458	7,5	M10x90	14	15	470
10110459	7,5	M10x150	14	15	470
10110460	7,5	M12x100	14 15		770
10110461	7,5	M12x125	14	15	770
10110462	7,5	M12x150	14	15	770
10110463	7,5	M16x66	17	15	1450
10110464	7,5	M16x100	17	15	1450
10110465	7,5	M16x150	17	15	1450
10110466	10,5	M20x85	22	15	2430
10110467	10,5	M20x100	22	15	2430
10110468	10,5	M20x150	22	15	2430

Teller für Integral-Stellfüße MP3

schwenkbarer, nivellierbarer Stellfuß zum Ausgleich von Bodenunebenheiten, mit Dichtlippe, dicht bis 8° Neigung, max. 20° möglich.

Material:

Teller: Edelstahl 1.4301

Anti-Slip-Platte:TPE, beständig gegen Öl und Wasser (bis 60°C), mit antibakteriellem und

antimikrobiellem Schutz

Artikel-Nr.	Durchmesser mm	Höhe mm	Belastung max. kg
10110635	60	29	700
10110636	80	29	700
10110637	100	29	700

Maschinenaufstellung SLM

Die Typenreihe SLM eignet sich aufgrund ihrer niedrigen Eigenfrequenz sehr gut zur Empfängerisolation und zur Lösung von Schwingungsproblemen bei Zwischendeckenaufstellungen.

Anwendungsbereich:

Messmaschinen, Meßtischplatten, Fundamente, Pressen, Stanzautomaten, Nippelmaschinen, Kompressoren, Lüfter

Artikel-Nr.	Durchmesser mm	Höhe mm	Nivellierhöhe mm	Gewinde	Belastung max. kg	Herstellerbezeich- nung
10076540	73	65	5	M10	65	SLM 1 A
10076464	105	65	5	M12	100	SLM 3 A
10101620	127	90	6	M12	280	SML 6 A
10101621	172	90	6	M12	600	SML 12 A
10101622	245	90	6	M16	1300	SML 24 A
10101625	338	90	6	M16	2600	SML 48 A
10101626	468	90	6	M24	5500	SML 96 A
10101628	610	90	6	M24	10000	SML 192 A

Maschinenaufstellung KE

Niveaustabiler Nivellierschuh mit rutschhemmendem Belag, die Verstellung erfolgt über einen Keil durch eine seitliche Stellschraube mit Feingewinde.

Artikel-Nr.	Höhe mm	Nivellierhöhe mm	Breite mm	Länge mm	Belastung max. kg	Herstellerbezeichnung
10103058	36	±4	55	105	1500	KE 5-0/0 Metall
10103102	46	±4	55	105	900	KE 5-5/5 Metall
10103106	40	±4	115	115	2300	KE 10-0/0 Cermalan
10103107	50	±4	115	115	2000	KE 10-5/5 Cermalan
10103108	47	±4	150	150	4000	KE 20-0/0 Metall
10103109	57	±4	150	150	3600	KE 20-5/5 Metall
10103110	50	±4	200	200	7200	KE 40-0/0 Metall
10103111	60	±4	200	200	6400	KE 40-5/5 Metall
10103113	68	±4	220	250	10000	KE 60-0/0 Metall
10103114	78	±4	220	250	9000	KE 60-5/5 Metall
10103115	84	±4	400	300	15000	KE 70-0/0 Metall
10103116	94	±4	400	300	13500	KE 70-5/5 Metall

Riffelplatte RPV

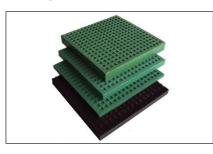
Maschinenlagerung für Maschinen ohne Befestigungsmöglichkeit, Maschinen die besonders steife Auslegung erfordern Material:

CR-Qualität mit hohe Elastitzität, öl- und alterungsbeständig.

Artikel-Nr.	Höhe mm	Breite mm	Länge mm	Belastung max. kg	Herstellerbezeichnung
10104066	8	225	225	3000	RPV 22
68630	8	450	450	12000	RPV 45

Riffelplatte EP

Maschinenlagerung zum Aufstellen von Maschinen. Riffelmuster auf der Unterseite ermöglicht den Ausgleich geringer Bodenunebenheiten.


Material:

CR-Qualität Öl - und alterungsbeständig.

Härte: 80 Shore A

Artikel-Nr.	Höhe mm	Breite mm	Länge mm	Belastung max. kg	Herstellerbezeichnung
10109540	25	250	250	12000	EP 25

Riffelplatte EG

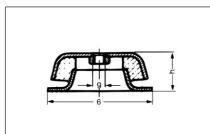
Maschinenlagerung zum Aufstellen von Maschinen. Riffelmuster auf beiden Seiten ermöglicht den Ausgleich geringer Bodenunebenheiten. Zur Isolierung und Dämpfung von Maschinen mit hoher Eigendynamik

NBR - Öl - und alterungsbeständig.

Artikel-Nr.	Höhe mm	Breite mm	Länge mm	Farbe	Ausführung	Belastung max. kg
10122582	16	100	100	grün	zweiseitig	2500
10120897	15	148	148	schwarz	einseitig	2000
10116544	8	200	200	grün	zweiseitig	5000
10116557	16	200	200	schwarz	zweiseitig	4400
10116545	16	200	200	grün	zweiseitig	5000
10116546	24	200	200	grün	zweiseitig	5000

Lochplatte IM

Hochleistungsfähiger stoß- und vibrationshemmender Werkstoff. Lochbohrungen an der Unterseite zur Erhöhung der Elastizität, quadratisches Profil an der Oberseite für bessere Rutschfestigkeit.

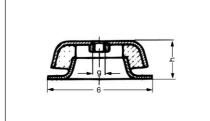

Material:

NBR

Artikel-Nr.	Höhe mm	Breite mm	Länge mm	Farbe	Belastung max. kg
10119264	25	500	1000	schwarz	5 kg/cm ²
10119265	50	500	1000	schwarz	5 kg/cm ²
10119266	25	500	1000	schwarz	12 kg/cm ²
10119267	50	500	1000	schwarz	12 kg/cm ²

Maschinenfuß MS oval 2-Loch - SCHWINGMETALL®

SCHWINGMETALL®Topf-Elemente für Niveauregulierung und befestigungsloses Aufstellen.

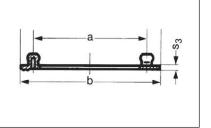


Artikel-Nr.	Höhe mm	Gewinde	Form-Nr.	Belastung max. kg
10113175	33	M10	103965	250

Maschinenfuß MS eckig 4-Loch - SCHWINGMETALL®

SCHWINGMETALL®Topf-Elemente werden in fünf Größen und drei Elastomer-Härten geliefert. Für Niveauregulierung und befestigungsloses Aufstellen der Größen:

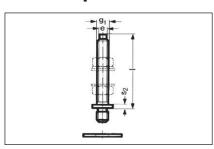
58540, 33629 und 58541 sind verschiedene Kombinationen lieferbar.



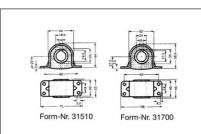
Artikel-Nr.	Höhe mm	Gewinde	Form-Nr.	Belastung max. kg
66330	40	M12	58540	360
66340	50	M16	33629	700
66350	70	M20	58541	1200

Matte

Die Unterlegmatte erlaubt eine befestigungslose Aufstellung ohne jede Verankerung, bei geringen bis mittleren Querkräften.


Artikel-Nr.	für Form-Nr.
10098230	58540
4132620	33629
10098229	58541

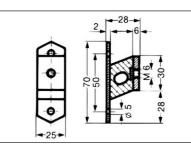
Nivellierspindel



Nivellierspindel ermöglichen leicht, sicher und genau das Einrichten und Nivellieren von Maschinen und Apparaten.

Artikel-Nr.	Gewinde	Länge mm	für Form-Nr.
10099550	M12	85	58540
4132610	M16	96	33629
10099553	M20	106	58541

Geräteelemente B2 - SCHWINGMETALL®

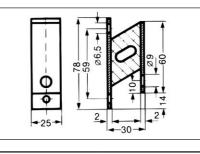


SCHWINGMETALL® Bügel-Elemente sind geeignet um Wellenenden elastisch auf ebenen Flächen zu befestigen. Das Element erlaubt axiale, radiale, torsionale und kardanische Bewegungen, jeweils mit einer eigenen Federsteifigkeit.

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Innen Ø mm	Form-Nr.
66410	weich	44,0	75	33	18	31510
66430	mittel	44,0	75	33	18	31510
66450	hart	44,0	75	33	18	31510
66420	weich	58,5	108	45	25	31700
66440	mittel	58,5	108	45	25	31700
10102913	hart	58,5	108	45	25	31700

Geräteelemente E1 - SCHWINGMETALL® - 25284

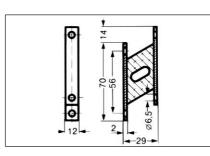
SCHWINGMETALL® Geräte-Elemente eignen sich besonders, um geringe Massen (von 2 kg bis 25 kg je Lagerpunkt) bei niedrigen Eigenfrequenzen zu lagern.



Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.
66470	weich	28	70	25	25284
66510	mittel	28	70	25	25284
66550	hart	28	70	25	25284

Geräteelemente E2 - SCHWINGMETALL® - 21423

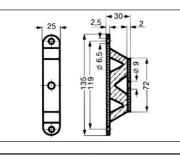
SCHWINGMETALL® Geräte-Elemente eignen sich besonders, um geringe Massen (von 2 kg bis 25 kg je Lagerpunkt) bei niedrigen Eigenfrequenzen zu lagern.



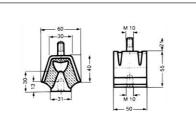
Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.
66480	weich	30	78	25	21423
66520	mittel	30	78	25	21423
66560	hart	30	78	25	21423

Geräteelemente E3 - SCHWINGMETALL® - 25187

SCHWINGMETALL® Geräte-Elemente eignen sich besonders, um geringe Massen (von 2 kg bis 25 kg je Lagerpunkt) bei niedrigen Eigenfrequenzen zu lagern.


Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.
66490	weich	29	84	12	25187
66530	mittel	29	84	12	25187
66570	hart	29	84	12	25187

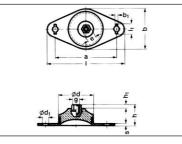
Geräteelemente W - SCHWINGMETALL® - 24332



SCHWINGMETALL® Geräte-Elemente eignen sich besonders, um geringe Massen (von 2 kg bis 25 kg je Lagerpunkt) bei niedrigen Eigenfrequenzen zu lagern.

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.
66500	weich	30	135	25	24332
66540	mittel	30	135	25	24332
66580	hart	30	135	25	24332

Dach-Elemente LA - SCHWINGMETALL®



SCHWINGMETALL® Dach-Elemente sind vielfach einsetzbare Aggregatlager. Im Allgemeinen werden sie so eingesetzt, dass die statische Last in Z-Richtung wirkt. Es gibt Dach-Elemente mit Abreißsicherung.

Artikel-Nr.	Shorehärte	Höhe mm	Gewinde mm	Länge mm	Breite mm	Form-Nr.
66140	mittel	55	M10x24	40	55	38451
66150	mittel	118	2xM12	176	70	33660

Hut Element HU - SCHWINGMETALL®

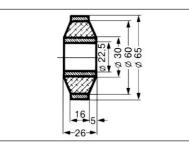
SCHWINGMETALL® Hut-Elemente zur Lagerung von Messgeräten und kleineren Aggregaten.

Die Federung ist sehr weich und in allen Richtungen gleich.

Hut-Elemente müssen axial belastet werden.

Naturkautschuk wahlweise in 40°, 55° und 65° Shore.

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.
66210	weich	20	60	35	27860
66240	mittel	20	60	35	27860
66270	hart	20	60	35	27860
66220	weich	32	90	50	27859
66250	mittel	32	90	50	27859
66280	hart	32	90	50	27859

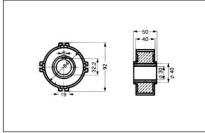

Hut Element HU - SCHWINGMETALL®

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.
66230	weich	50	140	80	27924
66260	mittel	50	140	80	27924
66290	hart	50	140	80	27924

Ring-Element T1 - SCHWINGMETALL® - 21489

SCHWINGMETALL® Ring-Elemente Außenring vierteilig mit 1,5 mm Schlitzbreite.

Einbau mit 1 mm Vorspannung, d = 64 mm Naturkautschuk wahlweise in 40°, 55° und 65° Shore.

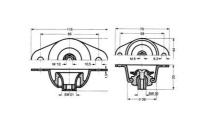


Artikel-Nr.	Shorehärte	Außen Ø mm	Breite mm	Innen Ø mm	Form-Nr.
66590	weich	65	26/16	22,5	21489
66610	mittel	65	26/16	22,5	21489
66630	hart	65	26/16	22,5	21489

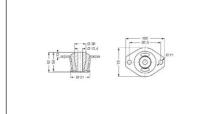
Torsionsbuchse T2 - SCHWINGMETALL® - 27843a

SCHWINGMETALL®Torsionsbuchse Zur weichen Axialfederung bei guter Radialführung und für torsionselastische Gelenke.

Naturkautschuk wahlweise in 40°, 55° und 65° Shore.


Artikel-Nr.	Shorehärte	Außen Ø mm	Breite mm	Innen Ø mm	Form-Nr.
66600	weich	84/92	40/50	30	27843a
66620	mittel	84/92	40/50	30	27843a

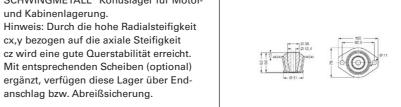
Glocken-Element GL - SCHWINGMETALL®



SCHWINGMETALL® Glocken-Elemente eignen sich für Anwendungen, bei denen Masse (von 2 kg bis 70 kg) hängend gelagert werden sollen.

Artikel-Nr.	Shorehärte	Höhe mm	Gewinde	Länge mm	Breite mm	Form-Nr.
10096984	weich	33	M6	70	44	58500
404390	mittel	33	M6	70	44	58500
10096985	hart	33	M6	70	44	58500
66390	weich	30	M10	115	62,5	27994
404380	mittel	30	M51	115	62,5	27994
404410	hart	30	M10	115	62,5	27994

Konuslager KS - SCHWINGMETALL® - 210356

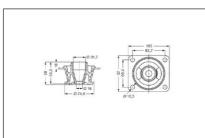


SCHWINGMETALL® Konuslager für Motorund Kabinenlagerung. Hinweis: Durch die hohe Radialsteifigkeit cx,y bezogen auf die axiale Steifigkeit cz wird eine gute Querstabilität erreicht. Mit entsprechenden Scheiben (optional) ergänzt, verfügen diese Lager über Endanschlag bzw. Abreißsicherung.

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.	Belastung max. kg	
10112976	weich	52	102	76	210356	65	
10112977	mittel	52	102	76	210356	110	
10112978	hart	52	102	76	210356	135	

Konuslager KA - SCHWINGMETALL® - 210355

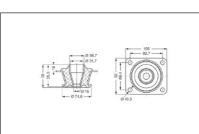
SCHWINGMETALL® Konuslager für Motorund Kabinenlagerung. Hinweis: Durch die hohe Radialsteifigkeit cx,y bezogen auf die axiale Steifigkeit cz wird eine gute Querstabilität erreicht. Mit entsprechenden Scheiben (optional) ergänzt, verfügen diese Lager über End-



Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.	Belastung max. kg	
10112973	weich	52	102	76	210355	100	
10112974	mittel	52	102	76	210355	175	
10112975	hart	52	102	76	210355	225	

Konuslager KS - SCHWINGMETALL® - 210352

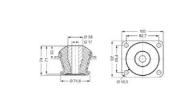
SCHWINGMETALL® Konuslager für Motorund Kabinenlagerung Hinweis: Durch die hohe Radialsteifigkeit cx,y bezogen auf die axiale Steifigkeit cz wird eine gute Querstabilität erreicht. Mit entsprechenden Scheiben (optional) ergänzt, verfügen diese Lager über Endanschlag bzw. Abreißsicherung.



Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.	Belastung max. kg	
10112970	weich	58	105	92	210352	75	
10112971	mittel	58	105	92	210352	125	
10112972	hart	58	105	92	210352	170	

Konuslager KA - SCHWINGMETALL® - 210089

SCHWINGMETALL® Konuslager für Motorund Kabinenlagerung Hinweis: Durch die hohe Radialsteifigkeit cx,y bezogen auf die axiale Steifigkeit cz wird eine gute Querstabilität erreicht. Mit entsprechenden Scheiben (optional) ergänzt, verfügen diese Lager über Endanschlag bzw. Abreißsicherung.

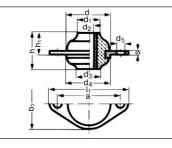

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.	Belastung max. kg	
10112967	weich	58	105	92	210089	110	
10112968	mittel	58	105	92	210089	180	
10112969	hart	58	105	92	210089	250	

Konuslager KA - SCHWINGMETALL® - 210444

SCHWINGMETALL® Konuslager für Motorund Kabinenlagerung Hinweis: Durch die hohe Radialsteifigkeit cx,y bezogen auf die axiale Steifigkeit cz wird eine gute Querstabilität erreicht. Mit entsprechenden Scheiben (optional) ergänzt, verfügen diese Lager über Endanschlag bzw. Abreißsicherung.

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.	Belastung max. kg	
10112960	weich	74	105	92	210444	180	
10105270	mittel	74	105	92	210444	300	
10112962	hart	74	105	92	210444	440	

Konuslager KA - SCHWINGMETALL® - 210470



SCHWINGMETALL® Konuslager für Motorund Kabinenlagerung Hinweis: Durch die hohe Radialsteifigkeit cx,y bezogen auf die axiale Steifigkeit cz wird eine gute Querstabilität erreicht. Mit entsprechenden Scheiben (optional) ergänzt, verfügen diese Lager über Endanschlag bzw. Abreißsicherung.

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.	Belastung max. kg	
10112980	weich	86	130	130	210470	120	
10112981	mittel	86	130	130	210470	190	
10112982	hart	86	130	130	210470	300	

Flansch-Element FL - SCHWINGMETALL®

- SCHWINGMETALL® Elemente
- dämpfen Erschütterungen und Körperschall
- isolieren Maschinenschwingungen
- reduzieren Beschleunigungen
- schützen vor Lärm

Shorehärte: wei

Artikel-Nr.	Höhe mm	Länge mm	Breite mm	Form-Nr.
66650	40	90	48	48685
759670	44	115	71	48688
66660	54	115	71	48686
66670	62	150	90	48690
10028083	68	174	108	48694

Fortsetzung →

Flansch-Element FL - SCHWINGMETALL®

Artikel-Nr.	Höhe mm	Länge mm	Breite mm	Form-Nr.
66690	76	174	108	48693
66680	82	174	108	48692

Hydrolager HY - SCHWINGMETALL®

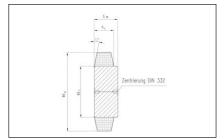
SCHWINGMETALL® Hydrolager eignen sich besonders als Motor- und Kabinenlagerungen. Hydrolager zeichnen sich durch kompakte Bauweise aus.

- integrierte Hydraulikeinheit ist wartungsfrei
- integrierter Zuganschlag

Artikel-Nr.	Shorehärte	Höhe mm	Länge mm	Breite mm	Form-Nr.
10097034	40	62,5	90	56	V 250
10097035	45	103,0	126	89	V 600
10094440	55	103,0	126	89	V 1500
10097032	60	103,0	126	89	V 1500
10097033	70	103,0	126	89	V 1500
10097036	55	120,0	126	108	V 3200

Gummi-Metall Reibrad

Reibräder bestehen aus einem Elastomerbelag und einem Metallkörper. Der Reibbelag ist fest mit dem Metallteil verbunden. Die verwendete Elastomer-Mischung auf der Basis von Polychloropren hat eine Härte von 80° +/- 5 Shore A.


Ausführung:

Sie ist verschleißfest und weitgehend ölbeständig, soll jedoch Temperaturen von 70°C nicht überschreiten. Nach Einlauf des Antriebes sind kurzzeitige Spitzen bis 80°C zulässig. Der Metallkörper ist aus handelsüblichem Automatenstahl 9 S 20 K hergestellt. Für die nachträgliche Bearbeitung sind Zentrierungen vorhanden.

Eigenschaften der Reibräder:

- große Leistungsübertragung
- hoher Wirkungsgrad
- lange Lebensdauergeringer Raumbedarf
- geringer Raumbedar
 geräuscharmer Lauf
- niedrige Lagerbelastung
- problemloser Einbau
- wartungsfreier Betrieb

Artikel-Nr.	Ø Gummi mm	Ø Metall mm	Breite Gummi mm	Breite Metall mm	Herstellerbezeichnung
4384300	40	25	10	13	40/10-25
4384320	45	28	11	14	45/11-28

Fortsetzung ⇒

Fortsetzung: Gummi-Metall Reibrad

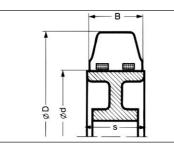
fest mit dem Metallteil verbunden. Die verwendete Elastomer-Mischung auf der Basis von Polychloropren hat eine Härte von 80° +/- 5 Shore A.

Ausführung:

Sie ist verschleißfest und weitgehend ölbeständig, soll jedoch Temperaturen von 70° C nicht überschreiten. Nach Einlauf des Antriebes sind kurzzeitige Spitzen bis 80° C zulässig. Der Metallkörper ist aus handelsüblichem Automatenstahl 9 S 20 K hergestellt. Für die nachträgliche Bearbeitung sind Zentrierungen vorhanden.

Reibräder bestehen aus einem Elastomerbelag und einem Metallkörper. Der Reibbelag ist

Eigenschaften der Reibräder:


- große Leistungsübertragung
- hoher Wirkungsgrad
- lange Lebensdauer
- geringer Raumbedarf - geräuscharmer Lauf
- niedrige Lagerbelastung
- problemloser Einbau
- wartungsfreier Betrieb

		bc			
			Zentrierung D	N 332	
S	900				

Artikel-Nr.	Ø Gummi mm	Ø Metall mm	Breite Gummi mm	Breite Metall mm	Herstellerbezeichnung
4384330	50	32	12	16	50/12-32
4384340	56	35	14	18	56/14-35
4384350	63	40	16	20	63/16-40
4384360	71	45	18	22	71/18-45
4384370	80	50	20	25	80/20-50
4384380	90	55	22	27	90/22-55
4384390	100	65	25	30	100/25-65
4384400	112	70	28	33	112/28-70
4384410	125	80	32	37	125/32-80
4384430	140	90	36	41	140/36-90
4384440	160	100	40	45	160/40-100

Reibring zylindrischer Radkörper RM - NK

Reibringe für Gummiwälzgetriebe bestehen aus der Laufflächenschicht, der Bodenschicht und dem Festigkeitsträger. Laufflächenschicht:

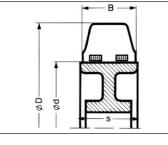
Die Laufflächenschicht ist mit ihren Eigenschaften auf die besonderen Anforderungen abgestimmt.

Material: RM - NK

Artikel-Nr.	Breite mm	Außen Ø mm	Innen Ø mm	Herstellerbezeichnung
404450	50	125	75	125/50-75 z
81730	50	160	100	160/100-50 z
81740	50	180	120	180/120-50 z
81760	75	200	100	200/100-75 z
81770	50	200	140	200/140-50 z
81790	75	230	120	230/120-75 z
81810	50	230	170	230/170-50 z

Fortsetzung →

Reibring zylindrischer Radkörper RM - NK


Artikel-Nr.	Breite mm	Außen Ø mm	Innen Ø mm	Herstellerbezeichnung
81820	75	250	140	250/140-75 z
81830	60	250	170	250/170-60 z
81840	60	280	190	280/190-60 z
81850	60	310	220	310/220-60 z
81860	60	360	270	360/370-60 z
81870	75	360	270	360/270-75 z
81880	60	400	305	400/305-60 z
81890	75	415	305	415/305-75 z
10099248	85	500	370	500/370-85 z
660400	65	500	410	500/410-65 z
660410	100	560	410	560/410-100 z
660430	100	1000	850	1000/850-100 z

Reibring zylindrischer Radkörper RS - CR

Reibringe für Gummiwälzgetriebe bestehen aus der Laufflächenschicht, der Bodenschicht und dem Festigkeitsträger. Laufflächenschicht:

Die Laufflächenschicht ist mit ihren Eigenschaften auf die besonderen Anforderungen abgestimmt.

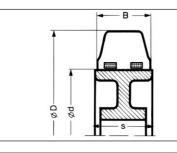
Material: RS - CR

Artikel-Nr.	Breite mm	Außen Ø mm	Innen Ø mm	Herstellerbezeichnung
81630	50	60	30	60/50-30 z
81640	60	71	34	71/60-34 z
81650	60	85	40	85/60-40 z
81660	50	86	40	86/50-40 z
81670	50	95	50	95/50-50 z
81680	60	95	50	95/60-50 z
81690	45	100	60	100/45-60 z
10099236	50	125	75	125/50-75 z
10099238	50	160	100	160/50-100 z
10099240	75	200	100	200/75-100 z
10099239	50	200	140	200/50-140 z
10099241	50	230	170	230/50-170 z
10099242	75	230	120	230/75-120 z
10099243	75	250	140	250/75-140 z
10099244	60	250	190	250/60-190 z
10099246	60	310	220	310/60-220 z
10099250	100	560	410	560/100-410 z
660420	75	750	640	750/75-640 z

Reibring konischer Radkörper RM - NK

Reibringe für Gummiwälzgetriebe bestehen aus der Laufflächenschicht, der Bodenschicht und dem Festigkeitsträger.

Laufflächenschicht:


Die Laufflächenschicht ist mit ihren Eigenschaften auf die besonderen Anforderungen abgestimmt.

Material: RM - NK

Artikel-Nr.	Breite mm	Außen Ø mm	Innen Ø mm	Herstellerbezeichnung
649950	75	360	270	360/75-270 k
81900	85	500	370	500/85-370 k

Reibring konischer Radkörper FM - NK

Reibringe für Gummiwälzgetriebe bestehen aus der Laufflächenschicht, der Bodenschicht und dem Festigkeitsträger. Laufflächenschicht:

Die Laufflächenschicht ist mit ihren Eigenschaften auf die besonderen Anforderungen abgestimmt.

Material: FM - NK

Artikel-Nr.	Breite mm	Außen Ø mm	Innen Ø mm	Herstellerbezeichnung
10064129	75	300	220	300/75-220 k FM

Einfaltenbalg Phoenix Typ "1 B"

Die Luftfeder wird vorwiegend als Hauptfeder in Straßen- und Schienenfahrzeugen eingesetzt. Faltenbälge werden z.B. für die Lagerung von vibrierenden / schwingenden Maschinen eingesetzt. Luftfederbälge sind als Einfalten-, Zweifalten- oder Schlauchrollbälge lieferbar. Federkennlinien können wir Ihnen gerne übermitteln. Evtl. benötigte Spannringe sind auf Anfrage für verschiedene Typen als Sonderanfertigung lieferbar.

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung
68640	170	49 / 104	6,4	1 B 04
68650	230	49 / 119	13,7	1 B 07
68660	280	55 / 135	18,6	1 B 12
68690	380	55 / 175	37,3	1 B 22
68700	435	55 / 175	55,9	1 B 34
68710	490	60 / 180	78,5	1 B 49

Einfaltenbalg Phoenix Typ "1 B" mit Platte

Einsatzmöglichkeiten:

Die Luftfeder wird vorwiegend als Hauptfeder in Straßen- und Schienenfahrzeugen eingesetzt. Faltenbälge werden z.B. für die Lagerung von vibrierenden / schwingenden Maschinen eingesetzt. Luftfederbälge sind als Einfalten-, Zweifalten- oder Schlauchrollbälge lieferbar. Federkennlinien können wir Ihnen gerne übermitteln.

Evtl. benötigte Spannringe sind auf Anfrage für verschiedene Typen als Sonderanfertigung lieferbar.

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung
10108094	215	50 / 90	11,5	SP 1 B 07

Einfaltenbalg ContiTech Typ "FS"

Einsatzmöglichkeiten:

Die Luftfeder wird vorwiegend als Hauptfeder in Straßen- und Schienenfahrzeugen eingesetzt. Faltenbälge werden z.B. für die Lagerung von vibrierenden / schwingenden Maschinen eingesetzt. Luftfederbälge sind als Einfalten-, Zweifalten- oder Schlauchrollbälge lieferbar. Federkennlinien können wir Ihnen gerne übermitteln.

Evtl. benötigte Spannringe sind auf Anfrage für verschiedene Typen als Sonderanfertigung lieferbar.

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung
10112327	160	50 / 110	4,4	FS 40-6
10101578	180	51 / 115	7,5	FS 70-7
10100991	230	50 / 135	10,9	FS 120-9
10100992	265	51 / 140	15,7	FS 200-10
10100996	335	55 / 175	26,8	FS 310-12
10100993	340	51 / 150	29,0	FS 330-11
10100994	400	51 / 175	42,2	FS 530-11

Einfaltenbalg ContiTech Typ "FS" mit Platte

Einsatzmöglichkeiter

Die Luftfeder wird vorwiegend als Hauptfeder in Straßen- und Schienenfahrzeugen eingesetzt. Faltenbälge werden z.B. für die Lagerung von vibrierenden / schwingenden Maschinen eingesetzt. Luftfederbälge sind als Einfalten-, Zweifalten- oder Schlauchrollbälge lieferbar. Federkennlinien können wir Ihnen gerne übermitteln. Evtl. benötigte Spannringe sind auf Anfrage für verschiedene Typen als Sonderanfertigung lieferbar.

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung
10100987	160	50/110	4,4	FS 40-6 G1/8
10115852	180	51/115	7,5	FS 70-7 G1/4
10107379	265	51/140	15,7	FS 200-10 G3/4
10117675	340	51/150	29,0	FS 330-11 G1/4
10112944	340	51/150	29,0	FS 330-11 G3/4
10110374	400	51/175	42,2	FS 530-11 G1/4
10116227	620	51/117	45,7	FS 1710-12 Wulst

Zweifaltenbalg Phoenix Typ "2 B"

Einsatzmöglichkeiten:

Die Luftfeder wird vorwiegend als Hauptfeder in Straßen- und Schienenfahrzeugen eingesetzt. Faltenbälge werden z.B. für die Lagerung von vibrierenden / schwingenden Maschinen eingesetzt. Luftfederbälge sind als Einfalten-, Zweifalten- oder Schlauchrollbälge lieferbar. Federkennlinien können wir Ihnen gerne übermitteln. Evtl. benötigte Spannringe sind auf Anfrage für verschiedene Typen als Sonderanfertigung lieferbar.

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung
68720	175	80 / 200	5,9	2 B 04 R
68750	235	85 / 225	12,8	2 B 07 R
68760	285	85 / 265	18,6	2 B 12 R
68780	295	85 / 300	21,6	2 B 15 R
68800	335	85 / 285	28,4	2 B 20 R
68840	350	85 / 285	30,4	2 B 22 R

Zweifaltenbalg ContiTech Typ "FD"

Einsatzmöglichkeiten:

Die Luftfeder wird vorwiegend als Hauptfeder in Straßen- und Schienenfahrzeugen eingesetzt. Faltenbälge werden z.B. für die Lagerung von vibrierenden / schwingenden Maschinen eingesetzt. Luftfederbälge sind als Einfalten-, Zweifalten- oder Schlauchrollbälge lieferbar. Federkennlinien können wir Ihnen gerne übermitteln.

Evtl. benötigte Spannringe sind auf Anfrage für verschiedene Typen als Sonderanfertigung lieferhar

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung
10101573	160	70 / 170	3,2	FD 40-10
10101574	180	72 / 200	5,2	FD 70-13
10101575	230	75 / 230	10,6	FD 120-17
10107354	245	75 / 250	11,7	FD 138-18
10101545	265	75 / 275	14,5	FD 200-19
10101576	340	75 / 305	27,6	FD 330-22
10101577	400	77 / 310	42,0	FD 530-22
10112014	650	100 / 500	160,0	FD 1730-40

Zweifaltenbalg ContiTech Typ "FD" mit Platte

Einsatzmöglichkeiten:

Die Luftfeder wird vorwiegend als Hauptfeder in Straßen- und Schienenfahrzeugen eingesetzt. Faltenbälge werden z.B. für die Lagerung von vibrierenden / schwingenden Maschinen eingesetzt. Luftfederbälge sind als Einfalten-, Zweifalten- oder Schlauchrollbälge lieferbar. Federkennlinien können wir Ihnen gerne übermitteln. Evtl. benötigte Spannringe sind auf Anfrage für verschiedene Typen als Sonderanfertigung lieferbar.

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung		
10107741	140	65 / 150	3,4	FD 44-10 G3/8		
10107788	230	75 / 230	10,6	FD 120-17 G1/4		
10107859	265	75 / 275	14,5	FD 200-19 G3/4		
10107771	265	75 / 275	14,5	FD 200-19 G1/4		
10108457	415	77 / 350	48,2	FD 530-30 G1		

56 LUFTFEDERBÄLGE ELASTOMERFEDERN 57

Schlauchrollbalg ContiTech Typ "SK" /"SZ" mit Platte

Luftfedern in der Schwingungsisolierung ContiTech Air Spring Systems bietet Lösungen für die schwingungsisolierte Lagerung von Maschinen. Luftfedern können durch Druckänderung der Belastung angepasst werden.

Artikel-Nr.	Durchmesser mm	Höhe min / max	Tragkraft kN	Herstellerbezeichnung
10110469	70	30 / 63	1,15	SK 19-4
10114090	100	38 / 84	3,10	SK 37-6
10114091	100	95 / 205	2,20	SZ 35-11
10114095	115	95 / 200	3,30	SZ 50-11
10114097	140	100 / 235	5,70	SZ 70-11
10114100	170	90 / 200	7,80	SZ 100-11
10114102	190	95 / 200	10,90	SZ 140-11

Elastomerfeder CR

EFFBE Elastomerfedern CR Rundfedern nach DIN ISO 10069-1

Elastomerrundfedern aus den Materialien EFFBE 295 und EFFBE Urelast sind in vielen verschiedenen Abmessungen mit Durchmessern von 16 mm bis 125 mm und Höhen von 12 mm bis 160 mm erhältlich.

Material: C

	Höhe	Außen Ø	Innen Ø	
Artikel-Nr.	mm	mm	mm	Typ Nr.
10098719	12	16	6,5	1612 CR
10095241	16	16	6,5	1616 CR
10021895	20	16	6,5	1620 CR
10098721	25	16	6,5	1625 CR
10098722	16	20	8,5	2016 CR
10098728	20	20	8,5	2020 CR
10098729	25	20	8,5	2025 CR
10098730	32	20	8,5	2032 CR
10086326	20	25	10,5	2520 CR
10098732	25	25	10,5	2525 CR
10098733	32	25	10,5	2532 CR
10098734	40	25	10,5	2540 CR
10098735	32	32	13,5	3232 CR
10098739	40	32	13,5	3240 CR
10023783	50	32	13,5	3250 CR
10098740	63	32	13,5	3263 CR
10098741	32	40	13,5	4032 CR
1120330	40	40	13,5	4040 CR
1120340	50	40	13,5	4050 CR
10094524	63	40	13,5	4063 CR

Fortsetzung ⇒

Elastomerfeder CR

	Höhe	Außen Ø	Innen Ø	
Artikel-Nr.	mm	mm	mm	Typ Nr.
10098742	80	40	13,5	4080 CR
10098744	32	50	17	5032 CR
1120360	40	50	17	5040 CR
1120370	50	50	17	5050 CR
10098745	63	50	17	5063 CR
10098746	80	50	17	5080 CR
10098747	100	50	17	50100 CR
10098748	32	63	17	6332 CR
10098749	40	63	17	6340 CR
10098750	50	63	17	6350 CR
10098644	63	63	17	6363 CR
10098751	80	63	17	6380 CR
10098752	100	63	17	63100 CR
10098754	125	63	17	63125 CR
10124539	25	80	21	8025 CR
10098755	32	80	21	8032 CR
10098756	40	80	21	8040 CR
10098757	50	80	21	8050 CR
10088978	63	80	21	8063 CR
10045878	80	80	21	8080 CR
10098758	100	80	21	80100 CR
10098760	125	80	21	80125 CR
10098761	32	100	21	10032 CR
10098774	40	100	21	10040 CR
10098775	50	100	21	10050 CR
10098780	63	100	21	10063 CR
10098781	80	100	21	10080 CR
10098782	100	100	21	100100 CR
10015015	125	100	21	100125 CR
10098783	32	125	27	12532 CR
10098784	40	125	27	12540 CR
10098785	50	125	27	12550 CR
10098786	63	125	27	12563 CR
10098787	80	125	27	12580 CR
10098788	100	125	27	125100 CR
10098789	125	125	27	125125 CR
10098790	160	125	27	125160 CR

Elastomerfeder PUR

EFFBE Elastomerfedern PUR

Rundfedern nach DIN ISO 10069-1

Elastomerrundfedern aus den Materialien EFFBE 295 und EFFBE Urelast sind in vielen verschiedenen Abmessungen mit Durchmessern von 16 mm bis 125 mm und Höhen von 12 mm bis 160 mm erhältlich.

Material: PUR

Artikel-Nr.	Höhe mm	Außen Ø mm	Innen Ø mm	Тур Nr.
10098624	12	16	6,5	1612 U 90
10040911	16	16	6,5	1616 U 90

Fortsetzung ⇒

58 ELASTOMERFEDERN ELASTOMERFEDERN 59

Fortsetzung: Elastomerfeder PUR

EFFBE Elastomerfedern PUR Rundfedern nach DIN ISO 10069-1

Elastomerrundfedern aus den Materialien EFFBE 295 und EFFBE Urelast sind in vielen verschiedenen Abmessungen mit Durchmessern von 16 mm bis 125 mm und Höhen von 12 mm bis 160 mm erhältlich.

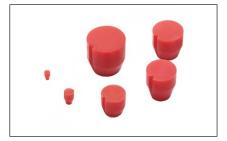
Material: PUR

	Höhe	Außen Ø	Innen Ø	
Artikel-Nr.	mm	mm	mm	Typ Nr.
10098625	20	16	6,5	1620 U 90
10098626	25	16	6,5	1625 U 90
10040912	16	20	8,5	2016 U 90
10040913	20	20	8,5	2020 U 90
10041097	25	20	8,5	2025 U 90
10040908	32	20	8,5	2032 U 90
10040909	20	25	10,5	2520 U 90
10098627	25	25	10,5	2525 U 90
10098628	32	25	10,5	2532 U 90
10040906	40	25	10,5	2540 U 90
10041091	32	32	13,5	3232 U 90
10040907	40	32	13,5	3240 U 90
10098629	50	32	13,5	3250 U 90
10098630	63	32	13,5	3263 U 90
10098631	32	40	13,5	4032 U 90
10098632	40	40	13,5	4040 U 90
10098633	50	40	13,5	4050 U 90
10098634	63	40	13,5	4063 U 90
10040910	80	40	13,5	4080 U 90
10098635	32	50	17	5032 U 90
10098636	40	50	17	5040 U 90
10098637	50	50	17	5050 U 90
10095952	63	50	17	5063 U 90
10098639	80	50	17	5080 U 90
10098640	100	50	17	50100 U 90
10098641	32	63	17	6332 U 90
10098642	40	63	17	6340 U 90
10098643	50	63	17	6350 U 90
10022086	63	63	17	6363 U 90
10098645	80	63	17	6380 U 90
10098646	100	63	17	63100 U 90
10098647	125	63	17	63125 U 90
10098648	32	80	21	8032 U 90
10098650	40	80	21	8040 U 90
10098651	50	80	21	8050 U 90
10098652	63	80	21	8063 U 90
10098653	80	80	21	8080 U 90
10098654	100	80	21	80100 U 90
10098655	125	80	21	80125 U 90
10098657	32	100	21	10032 U 90
10098658	40	100	21	10040 U 90
10098659	50	100	21	10050 U 90
10098660	63	100	21	10063 U 90
10098661	80	100	21	10080 U 90
10098662	100	100	21	100100 U 90
10098663	125	100	21	100125 U 90
10098664	32	125	27	12532 U 90

Fortsetzung →

Elastomerfeder PUR

Artikel-Nr.	Höhe mm	Außen Ø mm	Innen Ø mm	Тур Nr.
10098665	40	125	27	12540 U 90
10098666	50	125	27	12550 U 90
10098667	63	125	27	12563 U 90
10098668	80	125	27	12580 U 90
10098669	100	125	27	125100 U 90
10098672	125	125	27	125125 U 90
10098673	160	125	27	125160 U 90


Elastomerdruckstück PUR

EFFBE Druckstücke PUR

Urelast-Druckstücke werden vorzugsweise in Stanz-, Zieh- und Prägewerkzeugen zum Abheben und Auswerfen der Blechteile eingesetzt

Material:

PUR

Artikel-Nr.	Höhe mm	Belastung max N	Außen Ø mm	Тур Nr.
10041095	9,5	100	6	80-06
10040652	15,5	450	10	80-10
10041096	25	1500	16	80-16
10098617	25	3000	24	80-24
10098618	35	3000	30	80-30
10098620	32	12000	32	80-32
10098621	40	25000	39,5	80-40

Elastomerfeder Federteller

Verwendung: Für größere Federwege werden Elastomerfedern in Reihe geschichtet. Die Einzelfedern sind hierbei durch Federteller voneinander zu trennen. Bei gleichen Federkräften addieren sich die Einzelfederwege. Die Federsäulen müssen grundsätzlich geführt werden.

Material: MS 58

Artikel-Nr.	Außen Ø mm	Innen Ø mm	für Feder Ø	Typ Nr.
10112999	20	6,5	16	A20
10113000	25	8,5	20	A25
10113001	30	10,5	25	A30
10113002	40	13,5	32	A40
10113004	50	13,5	40	A50
10113005	60	16,5	50	A60
10113006	80	16,5	63	A80

Fortsetzung ⇒

Verwendung: Für größere Federwege werden Elastomerfedern in Reihe geschichtet. Die Einzelfedern sind hierbei durch Federteller voneinander zu trennen. Bei gleichen Federkräften addieren sich die Einzelfederwege. Die Federsäulen müssen grundsätzlich geführt werden.

Material:

Artikel-Nr.	Außen Ø mm	Innen Ø mm	für Feder Ø	Typ Nr.	
10113007	100	20,5	80	A100	
10113008	120	20,5	100	A120	
10113009	150	26,0	125	A150	

MS 58

Elastomerfeder Führungsbolzen

Führung und Zentrierung der Federn werden idealerweise mit Führungsbolzen (DIN 9835) erreicht. Sie sind erforderlich bei ungünstiger Federngeometrie und um ein Ausknicken bei Federsäulen zu vermeiden.

		Länge	Außen Ø	
Artikel-Nr.	Gewinde	mm	mm	Typ Nr.
10113011	M4	20	6	B 6x20
10113012	M4	25	6	B 6x25
10113013	M4	32	6	B 6x32
10113014	M6	20	8	B 8x20
10113015	M6	25	8	B 8x25
10113016	M6	32	8	B 8x32
10113017	M6	40	8	B 8x40
10113018	M6	50	8	B 8x50
10113019	M8	20	10	B 10x20
10113020	M8	25	10	B 10x25
10113021	M8	32	10	B 10x32
10113022	M8	40	10	B 10x40
10113023	M8	50	10	B 10x50
10113024	M8	63	10	B 10x63
10113025	M10	32	13	B 13x32
10113026	M10	40	13	B 13x40
10113027	M10	50	13	B 13x50
10113028	M10	63	13	B 13x63
10113029	M10	80	13	B 13x80
10113030	M10	95	13	B 13x95
10113031	M12	32	16	B 16x32
10113032	M12	40	16	B 16x40
10113033	M12	50	16	B 16x50
10113034	M12	63	16	B 16x63
10113035	M12	80	16	B 16x80
10113036	M12	95	16	B 16x95

Fortsetzung →

Elastomerfeder Führungsbolzen

A 471 1 B1		Länge	Außen Ø	
Artikel-Nr.	Gewinde	mm	mm	Тур Nr.
10113037	M12	118	16	B 16x118
10113038	M12	140	16	B 16x140
10113039	M16	32	20	B 20x32
10113040	M16	40	20	B 20x40
10113041	M16	50	20	B 20x50
10113042	M16	63	20	B 20x63
10113044	M16	80	20	B 20x80
10113045	M16	95	20	B 20x95
10113046	M16	118	20	B 20x118
10113047	M16	140	20	B 20x140
10113048	M20	32	25	B 25x32
10113049	M20	40	25	B 25x40
10113050	M20	50	25	B 25x50
10113051	M20	63	25	B 25x63
10113052	M20	80	25	B 25x80
10113053	M20	95	25	B 25x95
10113054	M20	118	25	B 25x118
10113055	M20	140	25	B 25x140
10113057	M20	180	25	B 25x180

Elastomerhohlstange PUR

Stangen, Platten und Ringe

ergänzen das Lieferprogramm der Normreihen. Für den Einsatz gelten die Anwendungsbeschreibungen und Einbauhinweise gleichermaßen. Sie finden in Bereichen des konstruktiven Maschinen-, Werkzeug und Anlagenbaus Verwendung.

Material: PUR

Artikel-Nr.	Länge mm	Außen Ø mm	Innen Ø mm	Herstellerbezeichnung
10114542	300	16	6,5	16-300 U90
10114543	300	20	8,5	20-300 U90
10114544	300	25	10,5	25-300 U90
10114545	300	32	13,5	32-300 U90
10114546	300	40	13,5	40-300 U90
10114547	400	50	17,0	50-400 U90
10114549	400	63	17,0	63-400 U90
10114550	400	80	21,0	80-400 U90
10114551	300	100	21,0	100-300 U90
10114552	300	125	27,0	125-300 U90

Hohlfeder TO

Tonnenförmige Gummihohlfeder TO

werden eingesetzt im gesamten Fahrzeugbau als Alleinabfederung, Zusatzfederung, Anschlagfederung, Kombinationsfederung und Aufbaufederung, als Anhängerkupplung und Auffahrpuffer.

Ein weiteres Einsatzgebiet hat die Gummihohlfeder im allgemeinen Maschinenbau gefunden als Stoß-, Erschütterungs- und Schwingisolierung, bei Passiv- und Aktiventstörung, zur Arbeitsaufnahme und zum Spannungs- und Dehnungsausgleich.

Material:

Naturkautschuk 60° - 65° Shore

Eigenschaften:

- lineare Anfangssteifigkeit
- knickstabil
- Aufnahme von Querkräfte
- für Spitzenkräfte bis 100kN

Artikel-Nr.	Höhe mm	Ø Außen mm	Bohrung mm	Belastung kN	Buchse/Flansch	Hersteller- bezeichnung
69020	25	34	8	1,85	a.A. / a.A.	TO 25/34 Kern N
939600	36	70	14	9,50	B220 / F108	TO 37/70 Kern N
69040	55	55	14	3,10	a.A. / a. A.	TO 55/55 Kern N
69050	56	90	24	21,00	B219 / F107	TO 56/90 Kern N
10040494	56	140	29	64,00	B214 / F105	TO 56/140 Kern N
69070	60	75	19	10,00	B217 / F108	TO 60/75 Kern N
69090	70	85	24	3,95	B219 / F107	TO 70/85 Kern N
10098247	88	130	34	39,50	B211 / F103	TO 70/85 Kern N
69130	90	108	29	12,00	B212 / F105	TO 90/108 Kern N
10098248	95	140	39	39,50	B209 / F104	TO 95/140 Kern N
69190	110	120	34	10,00	B211 / F103	TO 110/120 Kern N
10051879	120	140	39	24,30	B209 / F104	TO 120/140 Kern N
69250	140	125	39	23,40	B209 / F104	TO 140/125 Kern N
69270	150	155	39	37,00	B209 / F104	TO 150/155 Kern N
10098252	180	188	39	64,50	B202 / F102	TO 180/188 Kern N

Hohlfeder EE

Einfach eingeschnürte Gummihohlfeder EE

Naturkautschuk 60° - 65° Shore

- gegenüber Tonnenfedern geringere Anfangssteifigkeit
 größere Einfederung als TO möglich
- Kräfte bis 50 kN

Artikel-Nr.	Höhe mm	Ø Außen mm	Bohrung mm	Belastung kN	Buchse/Flansch	Hersteller- bezeichnung
10030463	70	80	19	6,70	B213 / F107	EE 70/80 Kern B
10098240	96	96	19	12,70	B211 / F106	EE 96/96 Kern B
629650	100	120	19	22,40	B212 / F103	EE 100/120 Kern B
69230	125	92	19	6,75	B210 / F103	EE 125/92 Kern B
10098242	130	100	19	9,40	B208 / F103	EE 130/100 Kern B
10051212	143	130	24	25,00	B205 / F103	EE 143/130 Kern A

Hohlfeder ME

Mehrfach eingeschnürte Gummihohlfeder ME

Material:

Naturkautschuk 60° - 65° Shore

Eigenschaften:

- je nach Anzahl der Einschnürungen gegenüberTO und EE geringere Anfangssteifigkeit
- größere Federwege
- Kräfte bis 25 kN

Artikel-Nr.	Höhe mm	Ø Außen mm	Bohrung mm	Belastung kN	Buchse/Flansch	Hersteller- bezeichnung
10026903	80	60	14	1,95	B219 / F107	ME 80/60 Kern C
10026906	120	66	15	3,80	B219 / F107	ME 80/60 Kern A
69290	160	110	19	19,80	B208 / F103	ME 160/110 Kern B
10098246	180	110	19	18,00	B210 / F103	ME 180/110 Kern A
69330	235	135	29	25,00	B202 / F102	ME 235/135 Kern C

Hohlfeder KE

Kegelförmige Gummihohlfeder KE

Material:

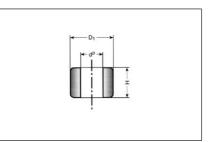
Naturkautschuk 60° - 65° Shore

Eigenschaften:

- für sehr weichen Kennlinienanlauf

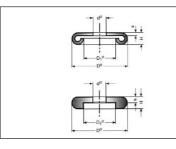
- starke Progression
- Kräfte bis 10 kN

Artikel-Nr.	Höhe mm	Ø Außen mm	Bohrung mm	Belastung kN	Buchse/Flansch	Hersteller- bezeichnung
69110	87	75	14	2,05	B218 / F109	KE 87/75 Kern B
69170	110	80	15	5,60	B219 / F107	KE 110/80 Kern A
10098243	110	92	19	28,20	B214 / F106	KE 110/92 Kern C
10098245	160	105	19	9,60	B214 / F103	KE 160/105 Kern B
69310	180	120	24	6,10	B209 / F102	KE 180/120 Kern A



BAULAGER 65

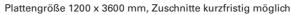
Hohlfeder Buchse



Zur Befestigung der Hohlfedern

Artikel-Nr.	Ø Außen mm	Ø Innen mm	für Gewinde	Тур Nr.	
10099185	25,0	12,5	M12	B 205	
10099186	20,0	12,5	M12	B 208	
10099187	25,0	16,5	M16	B 209	
10099188	20,0	12,5	M12	B 210	
10099189	20,0	12,5	M12	B 211	
10015006	20,0	12,5	M12	B 212	
10099190	20,0	10,5	M10	B 213	
10099191	20,0	12,5	M12	B 214	
10099193	15,0	8,5	M8	B 218	
10083590	15,0	10,5	M10	B 219	
10099194	15,0	10,5	M10	B 220	

Hohlfeder Flansch



Zur Befestigung der Hohlfedern

Artikel-Nr.	Ø Außen mm	Ø Innen mm	für Gewinde	Typ Nr.	
10100293	34,5	24,6	M10	F 101	
10100294	60,0	40,0	M16	F 102	
10100295	50,5	39,0	M12	F 103	
10100296	50,5	39,0	M16	F 104	
10021615	38,2	26,5	M12	F 105	
10100297	34,5	24,6	M12	F 106	
10083592	32,0	22,8	M10	F 107	
10025950	28,4	19,4	M10	F 108	
10100298	38,2	26,5	M8	F 109	

Unbewehrte Elastomer-Baulager

Gestützte Bauteile sind Beanspruchungen unterworfen, die sich als Druck, Verkantung und Verschiebung an den Unterstützungspunkten auswirken. Auch massiv und starr erscheinende Bauwerke bewegen sich unmerklich und übertragen außer dem Eigengewicht durch Temperaturschwankungen und Winddruck, horizontale Kräfte. Damit diese hohen Spannungen nicht zu einer Überanspruchung der Bauteile führen, müssen zwischen Über- und Unterbau elastische Zwischenglieder eingeschaltet werden, die freie horizontale Bewegungen und Verkantungen auf festen Untersützungen zulassen. Unbewehrte Elastomer-Baulager sind hierfür besonders gut geignet und haben sich in der Praxis ausgezeichnet bewährt. Sie verhindern Spannungskonzentrationen und lassen freie horizontale Bewegungen und Verkantungen zu. Durch einfache Montage, Wartungsfreiheit und niedrige Einbauhöhe lassen sich mit unbewehrten Elastomer-Baulagern ideal Lagerungsbedingungen erreichen.

Material: EPDM

EINLEITUNG

Gummi-Metall-Lager

Gummi-Metall-Lager

- sind bestimmt für den vielfältigen Einsatz im Maschinen- und Ingenieurbau
- zur Schwingungsisolation von Antrieben und Maschinen
- zum Schutz von Instrumenten, Präzisionsmaschinen und Geräten vor Schwingung und Stoß
- zur Minderung und Dämmung von Körperschall
- ermöglichen Relativbewegungen und bauen dadurch Zwangskräfte und -spannungen ab.

Gummi verdankt seine guten Isolationseigenschaften zunächst seiner Fähigkeit, sich bis zu hohen Dehnungswerten zu verformen. Durch den niedrigen Elastizitätsmodul werden daher bei relativ kleinen Abmessungen der Elemente große Federwege erreicht, die für eine schwingungstechnisch richtige Auslegung elastischer Lagerungen notwendig sind.

Durch eine spezielle Rezeptur beim Aufbau der Gummimischungen sowie zweckmäßige Formgebung der Gummikörper können spezifische Eigenschaften der Federelemente erreicht werden, die es ermöglichen, sie den jeweiligen Einsatzbedingungen hervorragend anzupassen.

Die Elemente sind unempfindlich gegen Korrosion und daher wartungsfrei. Bei Bedarfsfällen können besonders öl- und witterungsbeständige Mischungen eingesetzt werden. Die Elemente können nur dann zuverlässig die ihnen gestellten Aufgaben erfüllen, wenn sie schwingungstechnisch richtig eingesetzt werden. Dazu soll der Beitrag über mechanische Schwingungen dem Konstrukteur Anleitung und Hilfestellung sein. Oftmals erweist sich jedoch die einfache Betrachtung eines Systems als Einmassenschwinger mit einem Freiheitsgrad als unzulänglich.

In diesen Fällen muss die Punktmasse zum "starren Körper" erweitert und dessen Schwingungsverhalten untersucht werden. Um den Umfang in Grenzen zu halten, musste auf die Herleitung der Bewegungsgleichungen verzichtet werden, nicht aber auf die Bereitstellung aller benötigten Matrixelemente zur elektronischen Bestimmung der erzwungenen und freien Schwingungsverläufe. Letztere sind, besonders bei vernachlässigter Dämpfung, in der Regel von untergeordnetem Interesse, wurden jedoch aus methodischen Erwägungen aufgenommen.

Der Schubmodul

Die wichtigste Größe zur rechnerischen Behandlung von Gummifedern ist das Schubmodul (Gleitmodul) G. Es ist nicht von der Konstruktionsform der Gummifedern abhängig, sondern nur von dem Werkstoff Gummi. Das Schubmodul liegt in Abhängigkeit von der Shore-Härte für jede Gummimischung fest.

Der Elastizitätsmodul

Zwischen dem Elastizitätsmodul E und dem Schubmodul G besteht die aus der Elastizitätstheorie bekannte Beziehung:

$$G = \frac{E}{2(1 + \frac{1}{-\mu})}$$

Darin ist µ die Querdehnungszahl oder Poissonsche Konstante. Gummi als volumenelastischer und völlig inkompressibler Werkstoff hat eine Querdehnungszahl μ = -2, woraus

Diese Beziehung ist für die Berechnung von Gummifedern unbrauchbar, weil druckbeanspruchte Elastomerfedern – primäres Betätigungsfeld ingenieurmäßiger Berechnung und Konstruktion - in ihrem Druck-Stauchungsverhalten weniger von der Werkstoffhärte, als vielmehr von der Gestalt, Form und dem Profil des Elastomerkörpers beeinflusst werden. Aus der festhaftenden Verbindung zwischen Metallplatte und Gummikörper (gebundene Gummifeder) resultiert eine Behinderung der Querdehnung an den Stirnflächen und damit eine ungleichmäßige Verteilung der Schubspannungen als Einflussgrößen für die Steifigkeit des auf Druck beanspruchten Gummikörpers.

Zur praktischen Ermittlung der Druckfederkonstanten bedient man sich einer Ersatzrechnung, bei der ein formabhängiger Korrekturfaktor (Formfaktor) q eingeführt wird, der zwar kein echter Werkstoffkennwert ist, es aber erlaubt, das Hooksche Gesetz anzuwenden. Der Formfaktor wird aus dem Verhältnis der belasteten Körperfläche zur freien Mantelfläche (Auswölbfläche) des Elastomerelementes gebildet:

q = eine belastete Fläche / gesamte freie Oberfläche

Die Berechnung des Elastizitätsmoduls Ec kann für einfache geometrische Körper mit ausgeprägter Druckfläche wie Quader, Zylinder und Hohlzylinder nach der Formel:

$$E_0 = 3G (1 + q + q^2)$$

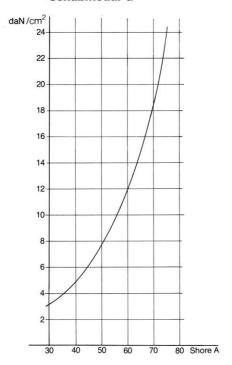
erfolgen. Aus der Definition des Formfaktors folgt für einen Gummiquader der Breite b, Länge I und Höhe h:

$$q = \frac{bl}{2h(b+l)}$$

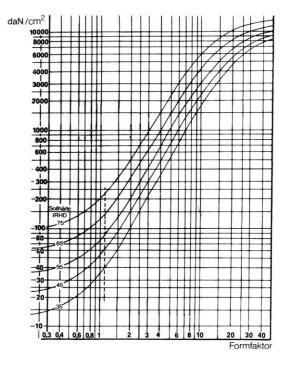
oder

$$q \approx \frac{b}{2h}$$

, wenn gilt: I >> b


und für den Hohlzylinder mit dem Außendurchmesser D, dem Innendurchmesser d und der Höhe h ergibt sich:

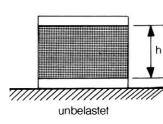
$$q = \frac{D-d}{4h}$$

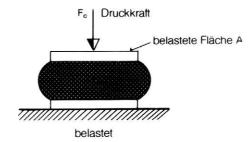

$$q = \frac{D}{4b}$$

im Falle des Vollzylinders.

Schubmodul G

Elastizitätsmodul E



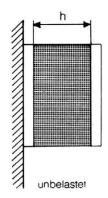

Statische Druckbeanspruchung

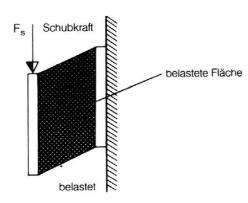
Mit dem aus dem Gleitmodul und dem Formfaktor abgeleiteten Ersatzmodul Egerrechnet sich die Drucksteifigkeit kgzu:

$$k_C = \frac{F_C}{f_C} = \frac{AE_C}{h}$$

Diese Gleichung gilt nur für den linearen oder quasilinearen Druck-Verformungsbereich, d. h. solange die statische Einfederung $f_{\rm c}$ keine Werte größer als ca. 20 % der unbelasteten Gummihöhe h annimmt. Aus Haltbarkeitsgründen wird man jedoch nur 10 % bis höchstens 15 % von h bei der praktischen Auslegung zulassen.

Statische Schubbeanspruchung

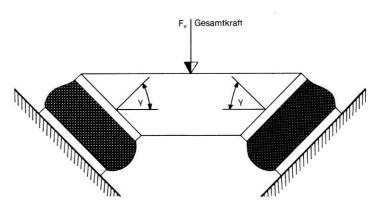

Ersetzt man in obiger Gleichung den Ersatzmodul Ec durch den Gleitmodul G, erhält man bei ausschließlicher Schubbelastung für die Schubsteifigkeit:


$$k_S = \frac{F_S}{f_S} = \frac{AG}{h}$$

Die Linearitätsgrenze der Schubverformung f_s liegt bei ca. 35 % der Gummischichtdicke. Aus den bereits genannten Gründen sollte f_s nicht mehr als ein Viertel der Gummihöhe betragen.

Sind den Schubverformungen Druckspannungen überlagert, so führt dies je nach Federaufbau zu einem mitunter auch überproportionalen Abfall der Schubsteifigkeit, was im Hinblick auf den jeweiligen Einsatzfall bedeutsam werden kann.

Mit zunehmendem Verhältnis der Höhe einer Elastomerfeder zu ihren Grundrissabmessungen wird die Schubverformung zusätzlich von der sogenannten Doppelbiegung überlagert; der Schubwiderstand wird relativ kleiner. Für die praktische Bemessung ist dieser virtuelle Schubmodul G' maßgebend.



Schräglagerung

Durch einen zu den Systemachsen geneigten Einbau von Einzelfedern oder Federpaketen lassen sich die guten Druckund Schubverformungseigenschaften von Elastomerfedern in idealer Weise miteinander kombinieren. So eignet sich die Schräglagerung beispielsweise besonders gut für Schiffshauptantriebe, wo sie nicht nur einen Beitrag zur Schwingungsentkopplung leistet, sondern auch wegen der im Vergleich zur Drucksteifigkeit niedrigeren Schubsteifigkeit die

"Roll"-Eigenfrequenz (Drehschwingung um die Motorlängsachse) und die Eigenfrequenz der Vertikalschwingung herabsetzt. Für ein Paar unter dem Winkel γ geneigte Federn lässt sich die vertikale Gesamtsteifigkeit k_{ν} mit bekannten Druck und Schubsteifigkeiten k_{ν} und k_{ν} berechnen:

$$k_v = \frac{F_V}{f} = 2 (k_c \sin^2 \gamma + k_s \cos^2 \gamma)$$

Zugbeanspruchung

Zugbeanspruchung führt in Gummi-Metallverbindungen zu Spitzenspannungen an den Hafträndern. Durch Vergrößerung der Haftfläche (z.B. bei Taillenpuffern) lassen sich diese Spannungen zwar abbauen, doch sollten Zugbeanspruchungen wegen der Kerbempfindlichkeit des Kautschuks generell vermieden werden.

Elastomerauswahl

Elastomere sind aus unterschiedlichen Kautschuk-Basisstoffen (Polymeren) aufgebaute Werkstoffe, die entsprechend dem verwendeten Polymer und den Mischungszusätzen unterschiedliche Eigenschaften aufweisen.

Neben den Werkstoffeigenschaften einer Gummifeder, die sich aus ihrem Aufbau (Rezeptur) herleiten, lassen sich durch konstruktive Maßnahmen elastische Lagerungselemente entwickeln, die dem besonderen Einsatzfall hervorragend angepasst sind.

Die Vielfalt der Kombinationsmöglichkeiten von Polymeren und Mischungszusätzen erschwert eine optimale Werkstoffauswahl. Hinzu kommt, dass sich durch einseitige Bevorzugung eines bestimmten Merkmals die übrigen und damit die Lagerung insgesamt verschlechtern können.

Orientierungstafel für die Vorauswahl von Elastomerwerkstoffen

Daten Elastomer- Werkstoffbasis			Eigenschaften																
Lieferbare Härten (Shore A)	Temperaturbeständigkeit	kurzzeitige Spitzentemp.	Zugfestigkeit (N/mm²)	Zugdehnung %	chemisch- technische Bezeichnung darunter: (Handelsnamen) Beispiele	Kurzzeichen	Zugfestigkeit	Einreißwiderstand	Abriebwiderstand	Rückstellvermögen	Stoßelastizität	Ozónbeständigkeit	Flammwidrigkeit	Säurebeständigkeit (verd.)	Benzin- und Mineralölbest.	Gasundurchlässigkeit	Wasseraufnahmebest.	 Temperaturbeständigkeit 	+ Temperaturbeständigkeit
25-95	-40 +110	+100	25	800	Naturkautschuk	NR	2	2	2	2	1	4	5	3	5	4	3	2	4
30-90	-30 /+120	+150	25	450	Chloroprenkautschuk (Bayprene, Neoprene)	CR	2	3	2	3	2	2	2	2	3	3	4	4	3
30-90	-40 +150	+180	20	450	Äthylen-Propylen- Kautschuk	EPDM	3	4	3	3	3	1	6	3	5	3	2	3	2
25-95	-40 +140	+160	25	500	Nitrilkautschuk (Perbunan)	NBR	3	4	3	3	3	5	5	3	1	3	3	4	3
35-95	-30 +110	+150	25	450	Styrol-Butadien- Kautschuk	SBR	3	3	2	3	3	5	5	3	5	3	3	3	3
55-98	-30 +80	+100	30	800	Polyurethankautschuk (Urepan)	PUR	1	2	1	3	3	2	4	5	2	4	5	3	4
40-80	-70 /+180	+225	8	250	Siliconkautschuk	SI	5	5	5	5	2	1	4	3	5	5	4	1	1
65-90	-30/ /+225	+350	20	400	Fluor-Kautschuk (Viton)	FPM	3	2	5	5	4	1	1	1	1	1	-	4	1

1 = sehr gut 2 = gut 3 = befriedigend 4 = ausreichend 5 = mangelhaft 6 = ungenügend

Die tabellarische Zusammenstellung von Werkstoffeigenschaften ist daher nur als grobe Orientierung zu verstehen. Durch Modifikation der Rezepturen bedingte Eigenschaftsabweichungen verändern das Vergleichsbild.

Prüfungen elastomerer Werkstoffe (Natur- und Synthesekautschuk)

Kautschuk-Prüfungen dienen der Bestimmung von Oualitätsmerkmalen. Unter dem Einfluss von Kräften, Temperatur und Chemikalien ändern sich die Eigenschaften elastomerer Werkstoffe.

Es ist die Aufgabe der mit der Konstruktion und Bemessung von Elastomerfedern befassten Ingenieure, diesen Veränderungen Rechnung zu tragen und die Eigenschaftswerte so festzulegen, dass sie den Erfordernissen des praktischen Einsatzes genügen. Dabei ist wichtig, die Gesamtkonzeption im Auge zu behalten und ihre Verschlechterung nicht zuzulassen, um einseitig Höchstwerte eines bestimmten Eigenschaftsmerkmals zu erreichen. Eine Beurteilung ist aber erst dann möglich, wenn prüffähige Werkstoffkennwerte vorliegen, deren normgerechte Ermittlung zusammen mit ständiger Qualitätsprüfung durch unser Labor sichergestellt werden.

Folgende Messungen werden durchgeführt:

Dichte	DIN 53 479
Zugfestigkeit und Bruchdehnung	DIN 53 504
Stoßelastizität (Rückprallelastizität)	DIN 53 512
Druckverformungsrest	DIN 53 517
Weiterreißfestigkeit (Strukturfestigke	eit) DIN 53 507
Eindruckhärte- Shorehärte	DIN 53 505
Verschleißbeständigkeit - DIN-Abriek	DIN 53 516
Alterungsbeständigkeit	DIN 53 508

Mechanische Bearbeitung von Kautschuk-Metall-Verbindungen

Nach der Vulkanisation müssen Gummi-Metall-Verbindungen oftmals ihrem Verwendungszweck entsprechend mechanisch bearbeitet, d.h. gesägt, gebohrt, geschliffen und geschweißt werden. Für das Sägen empfiehlt sich der Einsatz von Schnellsägemaschinen mit einer Schnittfrequenz > 100/m in oder von Bandsägen mit gut geführtem Sägeblatt. Ausreichende Kühlung und Schmierung verhindern Überhitzung und gewährleisten saubere Bearbeitung.

Häufig sind auch Gewindelöcher und Durchgangsbohrungen anzubringen. Dabei sind die Bohrungen so auszuführen, dass ein Abtrennen des Kautschuks von der Haftfläche ausgeschlossen wird.

Bei Schleif- und Schweißarbeiten besteht das Risiko einer zu hohen Wärmeentwicklung an der Haftstelle zwischen Kautschuk und Metall und damit Ablösungsgefahr. Darum ist eine Erwärmung der Metallarmaturen über 70 °C unbedingt zu vermeiden.

Mechanische Schwingungen

Im Maschinenbau und im Bauingenieurwesen haben Schwingungsfragen immer schon eine wichtige Rolle gespielt. Der Drang und auch Zwang nach immer leichterer Ausführung von Maschinen und Baukonstruktionen macht diese in verstärktem Maße "schwingungsempfindlich". Da es sich hierbei überwiegend um feste Körper, im Idealfall um "Punktmassen", handelt, sollte der berechnende Ingenieur und gestaltende Konstrukteur mit den Grundtatsachen über das Schwingungsverhalten solcher Obiekte. den mechanischen Schwingungen, vertraut sein. Er sollte die Möglichkeiten, aber auch die Grenzen und eventuellen Risiken geplanter und mitunter aufwendiger Maßnahmen zur Abwehr unerwünschter Schwingungen beurteilen können und damit in der Lage sein, von Fachingenieuren entwickelte Problemlösungen zu beurteilen und mitverantwortlich zu verwirklichen.

Sind bei auftretenden Schwingungsproblemen alle Maßnahmen der primären Schwingungsabwehr (Minimierung der Erregerkräfte, stat. u. dyn. Auswuchten, Massenausgleich etc.) erschöpft, so kann das Schwingungsverhalten eines Systems oftmals nur durch elastische Abkopplung verbessert werden, indem geeignete Federelemente zwischen

- Erreger und zu schützende Umgebung (aktive Entstörung) oder
- erregende Umgebung und zu schützendes Objekt (passive Entstörung)

geschaltet werden.

Diese Abkopplung bewirkt die Entstehung neuer Massen oder Teilkörper, die als Teil einer "Schwingerkette" voneinander unabhängige Horizontal-, Vertikal- und Drehbewegungen ausführen können. Jede unabhängige Massen- oder Teilkörperbewegungsrichtung (Koordinate) eines technischen Systems wird Freiheitsgrad genannt. Bei komplizierten Systemen, wie zum Beispiel "Kraftfahrzeug auf welliger Straße", kommen sehr schnell hundert und mehr mechanische Freiheitsgrade ins Spiel, wodurch der Aufwand zur Bestimmung der zeitabhängigen Bewegungsabläufe immens wird und nur noch elektronisch bewältigt werden kann. Diese Bewegungsabläufe können aus

Energiebetrachtungen und durch "Zerlegen" des Systems in Einzelgebilde bestimmt werden, indem für jedes Einzelgebilde getrennt das Kräfte- und Momentengleichgewicht formuliert wird. Die zwischen den bzw. auf die Teilkörper wirkenden Federund Dämpfungskräfte ergeben ein System von gekoppelten Bewegungsgleichungen (Differentialgleichungen), deren Lösungen eine der Zahl der Freiheitsgrade entsprechende Anzahl von Eigenfrequenzen, Eigenschwingungformen und Resonanzstellen liefern (die genannten Begriffe werden anhand eines Beispiels im Anhang erläutert).

Eine Einteilung schwingungsfähiger Systeme nach der Zahl der Freiheitsgrade ist sehr formal und eine Frage der Modellfindung. Systeme "haben" nicht einfach eine bestimmte Anzahl von Freiheitsgraden, diese werden zur Beschreibung interessierender Systembewegungen eingeführt. Dabei ist der Schwingungstechniker bemüht, den Rechenaufwand und damit die Zahl der Freiheitsgrade zu minimieren, solange der interessierende Frequenzbereich entsprechend niedrig ist und durch das Modell gut erfasst wird. Hier sind bereits einige Risiken versteckt, die zusammen mit Ungenauigkeiten der Eingangsparameter (statische und dynamische Federsteifigkeiten, Dämpfungswerte, Massen und Trägheitsmomente, Erregerkräfte und -momente, Erregerfrequenzen etc.) die Auslegung einer elastischen Lagerung beeinflussen können und ein gewisses Maß an Interpretationsfähigkeit von Berechnungsergebnissen erforderlich machen.

Viele technische Schwingungsprobleme lassen sich mit dem Modell des "1-Massen-Schwingers" (eine Masse mit einem Freiheitsgrad) hinreichend genau beschreiben und daher sind sein Schwingungsverhalten und die es kennzeichnenden Begriffe von grundlegender Bedeutung. Für kompliziertere Systeme empfiehlt sich die Einführung der übersichtlichen und anschaulichen Matrizenschreibweise, die eine Vielzahl von Größen miteinander verknüpft. Programme zum Matrizenkalkül sind für fast alle Rechnertypen verfügbar und daher auch ohne vertiefte Kenntnis der Matrizenalgebra nutzbar.

Allgemeines

Wie kompliziert auch modelliert wird, ob dem System ein, zwei, vier oder noch mehr Freiheitsgrade zugebilligt werden, solange als Systemkomponenten nur starre Körper, Federn und Dämpfer verwendet werden, haben die Bewegungsgleichungen folgenden Aufbau:

$$\mathbf{M}\ddot{\mathbf{w}} + \mathbf{C}\dot{\mathbf{w}} + \mathbf{K}\mathbf{w} = \mathbf{f} \tag{1.0.1}$$

Darin bedeuten:

M = Massen-, **C** = Dämpfungs- und K = Federsteifigkeitsparameterwerte

Erregergrößen werden durch f, Verschiebungsgrößen durch w beschrieben. Die Punkte deuten auf die den Verschiebungsgrößen zugeordneten Geschwindigkeiten (1 Punkt) bzw. Beschleunigungen (2 Punkte) hin und symbolisieren im

mathematischen Sprachgebrauch das einmalige und zweimalige Differenzial (Ableitung) der jeweiligen Verschiebungskoordinate nach der Zeit.

Durch die fettgedruckte Schreibweise sollen mehrere Bewegungs(differential)gleichungen mit der entsprechenden Anzahl von Freiheitsgraden eines Systems gewissermaßen zu einer einzigen Gleichung (Matrizengleichung) zusammengefasst werden. Geeignete Transformationsverfahren und die Ausnutzung von Symmetrieeigenschaften erlauben es immer, auch komplizierte Schwinger von n Freiheitsgraden auf n Schwinger mit nur einem Freiheitsgrad zurückzuführen.

SCHWINGUNGSTECHNIK

1. Lineare Schwinger von einem Freiheitsgrad

Die allgemeine Form des linearen Bewegungsgleichungssystems (1.0.1) bestimmt sich für den Einmassenschwinger aus dem Gleichgewicht aller am Massenpunkt angreifenden äußeren Kräfte und Trägheitskräfte in x-Richtung gemäß Abb 1.

$$m\ddot{x} + c\dot{x} + kx = f(t) = F_0 \cos \Omega t$$

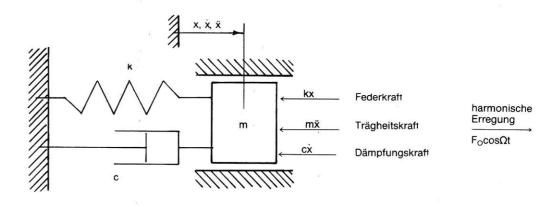


Abb. 1 Kräftegleichgewicht am Einmassenschwinger von einem Freiheitsgrad

Linear heißt, dass in den Bewegungs(differential)gleichungen nur lineare Glieder auftreten, d.h. die Federkraft proportional zur Auslenkung x und die Dämpfungskraft proportional zur Auslenkungsgeschwindigkeit x (viskoser Dämpfer) angenommen werden kann. Im einzelnen bedeuten:

m = Masse [kg]

c = Dämpfungskonstante [kg/s]

k = Federsteifigkeit [N/m] oder [kg/s²]

f = (t) zeitabhängige Erregerkraft [N]

F_o = Maximalwert (Amplitude) der Erregerkraft [NJ]

 $\Omega = \text{Erreger(kreis)frequenz [Rad/s]}$

t = Zeit [s] (Sekunden)

Die Bewegungsgleichung beschreibt eine erzwungene, gedämpfte Schwingung. Sobald die "Anlaufphase" (Einschwingvorgang) abgeschlossen ist, schwingt das System nur noch mit der Erregerfreguenz Ω sinusförmig, d.h. die als Lösung interessierenden Kraft- und Weggrößen ändern sich nach harmonischem Zeitgesetz:

 $x = A \cos (\Omega t - \phi)$

(1.0.2)

φ = Phasenunterschied zw. Erregung und Systemantwort

Vor der Ergebnisdiskussion der noch unbekannten Schwingwegamplitude A und des Phasenwinkels o sind jedoch noch einige grundsätzliche Betrachtungen am "freien Schwinger" notwendig.

1.1 Freie, ungedämpfte Schwingungen

Sie entstehen, wenn das System aus seiner Ruhelage ausgelenkt und anschließend ohne schwingungserregende Kraft sich selbst überlassen wird. Durch stets vorhandene dämpfende Widerstände klingt die Schwingung allmählich ab, die Amplituden werden kleiner. Daher darf die Dämpfung nicht vernachlässigt werden, soll der Schwingungsvorgang eines frei schwingenden Körpers formelmäßig einigermaßen richtig wiedergegeben werden.

Trotzdem ist es sinnvoll, ungedämpfte Schwingungen zu betrachten. Vor allem dann, wenn die Dämpfung klein ist und man sich nicht für den Schwingungsverlauf im einzelnen, sondern nur für die Eigenfrequenzen (Anzahl der freien Schwingungen/ Zeiteinheit) interessiert.

Die Bewegungsgleichung hat dann folgende Form:	$m\ddot{x} + kx = 0$	(1.1.1)
oder mit $\omega^2 = k/m$:	$\ddot{x} + \omega^2 = 0$	(1.1.1a)
Die allgemeine Lösung dieser Gleichung heißt:	$x = B \sin (\omega t + \phi_0)$	(1.1.2)

B ist darin die Amplitude der freien Schwingung, ϕ_0 der Nullphasenwinkel. Sie lassen sich aus den bei Schwingungsbeginn geltenden Weg- und Geschwindigkeitsgrößen ermitteln. Zum gleichen Ergebnis x gelangt man, wenn man einen

Pfeil (Zeiger) der Länge B um einen festen Punkt (Ruhelage) mit der konstanten Winkelgeschwindigkeit ω rotieren lässt und die Parallelprojektion der gleichförmig kreisenden Pfeilspitze auf die Bewegungsrichtung betrachtet:

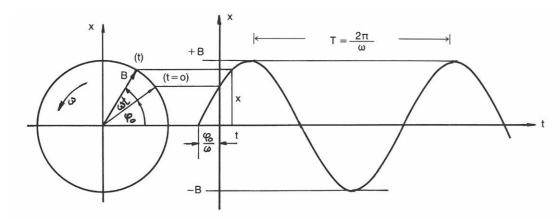


Abb. 2 Zeigerbild der harmonischen Schwingung

Auf die so entstehende hin- und hergehende geradlinige Bewegung, auch harmonische genannt, können die Gesetze der gleichförmigen Bewegung eines Punktes auf einer Kreisbahn angewendet werden. Die Analogie liefert folgende wichtige Beziehungen:

Frequenz:	$f=1/T=\omega/2\pi$	[1/s = 1Hz] (eine volle Schwingung / Sekunde)	
Schwingungsdauer:	$T=2\pi/\omega~[s]$	(Schwingungsdauer = Periode = Zeit/1 Umlauf)	
Eigenkreisfrequenz:	$\omega = 2\pi f = \sqrt{k/m}$	[Rad/s]	(1.1.3)
Eigenfrequenz:	$f = \frac{1}{2\pi} \sqrt{k/m}$	[Hz]	(1.1.4)
Zwischen der Drehzahl n [1/min] und der Kreisfrequenz w besteht außerdem folgender formelmäßiger Zusammenhang: $n=60~f=30~\omega/\pi$ bzw. $\omega=\pi n/30$ (1.1.5)			

SCHWINGUNGSTECHNIK

Federung

An Federelementen angreifende Kraftgrößen (Kräfte und Momente) rufen Formänderungsgrößen (Verschiebungen und Verdrehungen) hervor, deren grafische Zuordnung als Lastverschiebungsdiagramme oder Federkennlinien bezeichnet werden. In Abhängigkeit von der Art der Beanspruchung und geometrischen Formgebung unterscheidet man lineare, progressive und degressive Federkennlinien oder sogar solche, die abschnittsweise alle genannten Verlaufsformen zeigen.

Die Federsteifigkeit oder Federrate k ist dem Betrage nach gleich der Steigung der Tangente an die jeweilige Kennlinie in einem beliebigen Punkt D.

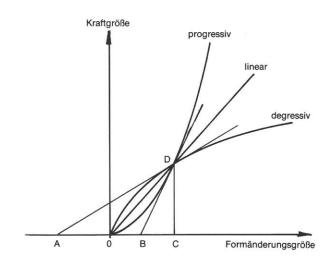


Abb. 3 Federkennlinien

 $\begin{aligned} k_{progressiv} &= \text{CD/BC (abhängig von D)} \\ k_{degressiv} &= \text{CD/AC (abhängig von D)} \\ k_{linear} &= \text{CD/OC (konstant)} \end{aligned}$

Bei linearer Feder kann die Federsteifigkeit auch durch die statische Einfederung x_{st} unter der Gewichtskraft G dargestellt werden. Es gilt dann unter der Voraussetzung, dass die Federrate unabhängig von der Frequenz ist:

$$k = G/x_{st} = mg/x_{st}$$

Mit ω^2 = k/m folgt damit für die Eigenkreisfrequenz: ω^2 = g/x_{st}. Setzt man für die Erdbeschleunigung g = 981 cm/s² ein, ergibt sich für die Eigenfrequenz bzw. -drehzahl:

$$f = \frac{1}{2\pi} \sqrt{981/x_{st}} \approx 5/\sqrt{x_{st}} \ [Hz] \ (1.1.6)$$

$$n \approx 300/\sqrt{x_{st}}$$
 [1/min] x_{st} in [cm]! (1.1.7)

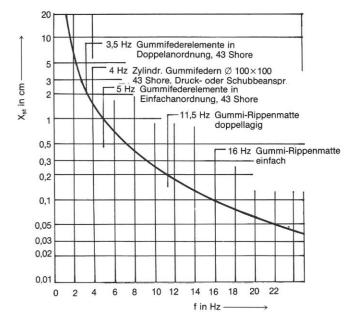


Abb. 4 Eigenfrequenzen in Abhängigkeit von der statischen Einfederung

1.2 Erzwungene, gedämpfte Schwingungen (periodische Erregung)

Erregungen können in Form von Kraft- und Bewegungserregung auftreten. Im folgenden sollen nur periodische Erregergrößen betrachtet werden, die sich jedoch stets als Summe einzelner harmonischer Erregungen (Fourier-Reihen) darstellen lassen und bei linearen Systemen phasengerecht überlagert werden dürfen. Drei technisch wichtige Fälle gilt es getrennt zu untersuchen:

1. Krafterregung nach Abb. 1: $f_1(t) = F_0 \cos \Omega t$

2. Unwuchterregung durch eine mit der Winkelgeschwindigkeit Ω umlaufende Masse m.:

 $f_2(t) = m_e r \Omega^2 \cos \Omega t$ gemäß Abb. 5a und

3. Weg- oder Stützenerregung durch periodische Bewegung des Federverankerungspunktes bzw. Aufstellortes nach dem Weggesetz:

(Abb. 5b).

 $u(t) = u \sin \Omega t$ und der daraus abgeleiteten Geschwindigkeit: $u(t) = U_0 \Omega \cos \Omega t$

7//////////

Abb. 5 Unwucht- und Stützenerregung des Feder-Masse-Schwingers

Aus Abb. 5b wird erkennbar, dass sich die absolute Federverlängerung und damit die Federkraft aus der Differenz der Wege x(t) und u(t) ergibt. Entsprechendes gilt auch für die geschwindigkeitsabhängige Dämpfungskraft, so dass die Gleichung: $m\ddot{x} + c(\dot{x} - \dot{u}) + k(x - u) = 0$ die Bewegung der Masse m beschreibt. Durch Einsetzen und Umordnung erhält man hieraus die Erregerfunktion

 $f_3(t) = u_o [k \sin \Omega t + c\Omega \cos \Omega t] \text{ mit } u_a \text{als Wegamplitude.}$

Der Klammerausdruck ist von einer bei Schwingungsproblemen häufig auftretenden Bauart und kann aufgrund der wichtigen

$$\begin{aligned} C_1 & \sin \omega t + C_2 \cos \omega t = \sqrt{{C_1}^2 + {C_2}^2} \sin \left(\omega t + \alpha\right) \\ & \text{mit} & \sin \alpha = C_2/\sqrt{{C_1}^2 + {C_2}^2} \;, & \cos \alpha = C_1/\sqrt{{C_1}^2 + {C_2}^2} \;, & \tan \alpha = C_2/C_1 \end{aligned}$$

in der gleichwertigen Form: $f_3(t) = u_0 \sqrt{k^2 + (c\Omega)^2} \sin{(\Omega t + \alpha)}$. $\tan \alpha = c\Omega$ dargestellt werden.

SCHWINGUNGSTECHNIK

Dämpfung

Für mathematische Zwecke kann die Gummifeder vereinfacht als ein Modell angesehen werden, dass aus einer idealen Feder mit der Steifigkeit k und parallelgeschaltetem Viskosedämpfer mit der Dämpfungskonstanten c besteht. In den meisten Fällen gibt diese, auch als Kelvin-Voigt-Modell bekannte Anordnung die Wirklichkeit aut wieder und wird daher häufig benutzt. Es muss aber darauf hingewiesen werden, dass die Kautschukdämpfung sich wesentlich von viskoser Dämpfung unterscheidet, was experimentelle Ergebnisse erkennen lassen.

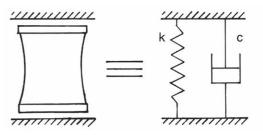


Abb.6 KELVIN-VOIGT-MODELL einer Gummifeder

Wie bereits gezeigt wurde, ergibt sich durch die Formulierung des Kraftgesetzes bei Wegerregung (Zusammenfassung der Federkraft ku und der Dämpfungskraft cú) eine Phasenverschiebung a, die als dynamischer Federkennwert interpretiert wird und aus Messungen frequenzabhängig ermittelt werden kann.

In der hergeleiteten Beziehung:
$$\tan \alpha = c\Omega/k$$
 (1.2.1)

bezeichnet man d = $\tan \alpha$ als Verlustfaktor und α als den zugehörigen Verlustwinkel, der die Phasenverschiebung zwischen der durch die Feder übertragenen Kraft und der Federverformung wiedergibt. Sie ist nicht zu verwechseln mit der Phasenverschiebung φ zwischen Erregung und Bewegung einer Masse m in dem gewählten Lösungsansatz (1.0.2) für die betrachteten Bewegungsgleichungen:

1.
$$m\ddot{x} + c\dot{x} + kx = f_1(t) = F_0 \cos \Omega t$$
 (1.2.2)

2.
$$m\ddot{x} + c\dot{x} + kx = f_2(t) = m_e r \Omega^2 \cos \Omega t$$
 $(m = m_o + m_e)$ (1.2.3)

3.
$$m\ddot{x} + c\dot{x} + kx = f_3(t) = u_o[k \sin \Omega t + c\Omega \cos \Omega t]$$
 (1.2.4)

Von den zahlreichen, die Dämpfung kennzeichnenden Größen sollen zwei eingeführt werden, die sich aus der Dämpfungskonstanten c herleiten und sich bei der Darstellung und Lösung der vorstehenden Bewegungsgleichungen als zweckmäßig erwiesen haben:

die Abklingkonstante
$$\,\delta=\frac{c}{2m}\,$$
 [1/s] und der Dämpfungsgrad $\,D=\delta/\omega_o=\frac{c}{2\sqrt{km}}$

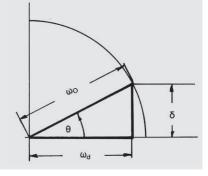
Bei der Betrachtung des gedämpften freien Schwingers fällt auf, dass neben dem Abklingen der Amplituden die Frequenzen unterhalb derjenigen des ungedämpften Systems liegen, entsprechend dem Weg-Zeit-Gesetz:

$$x(t) = e^{-\delta t} (C_1 \sin \omega_d t + C_2 \cos \omega_d t)$$
 $e = 2.71828218...$ (1.2.5)

Es ist daher notwendig, die beiden Eigenkreisfrequenzen voneinander zu unterscheiden, indem z. B. die Frequenz des ungedämpften Systems mit ω_a=√k/m bezeichnet wird. Beide Frequenzen sind über die Abklingkonstante δ bzw. den Dämpfungsgrad D folgendermaßen miteinander verknüpft:

$$\omega_{d} = \sqrt{\omega_{o}^{2} - \delta^{2}} = \omega_{o} \sqrt{1 - \delta^{2}/\omega_{o}^{2}} = \omega_{o} \sqrt{1 - D^{2}}$$
 (1.2.6)

Substituiert man in der Gleichung (1.2.1) die Werte für c durch 2mδ und k durch mæ², so lässt sich der Dämpfungsgrad D auch durch den Verlustwinkel α ausdrücken und ebenso eine Verbindung zum Dämpfungswinkel θ gemäß Abb. 7 herstellen:

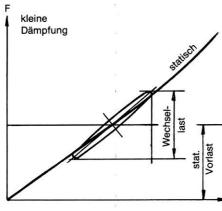

$$D = \sin \theta = \delta/\omega_o = \omega_o/2\Omega \tan \alpha \tag{1.2.7}$$

Für den Fall der Resonanz ($\Omega = \omega_0$) vereinfacht sich diese Gleichung zu:

$$D = 1/2 \tan \alpha \approx \alpha/2 \tag{1.2.7a}$$

Liegen keine genaueren Messwerte vor, so kann die Werkstoffdämpfung D überschlägig aus der Werkstoffelastizität nach DIN 53512 wie folgt ermittelt werden:

$$D \approx (100 - \text{Elastizität [\%]}) / 950 \tag{1.2.8}$$



Dämpfung

Als Richtwerte für Gummifedern gelten Verlustwinkel von 3 bis 7 Grad, entsprechende Dämpfungsgrade sind 0.025 bis 0.065 (niedrigdämpfende Elastomerwerkstoffe). Bei hochdämpfenden Elastomeren können jedoch auch Verlustwinkel bis 20 Grad erreicht werden. Allgemein gültige Dämpfungswerte, etwa in Abhängigkeit von der Shorehärte, lassen sich nicht angeben, da die Dämpfung von vielen Parametern (Gummigualität, Temperatur, Verformungsgeschwindigkeit und -beschleunigung, Formgebung und Spannungsart) abhängt.

Beobachtet man das dynamische Verhalten einer Gummifeder unter schwingender Beanspruchung im Last-Verschiebungs-Diagramm, so fällt auf, dass die Be- und Entlastungskurve in der Regel nicht identisch sind, sondern eine Schleife (Hysteresekurve) bilden, deren Flächeninhalt ein Maß für die Dämpfung und gleichbedeutend mit der Verlustarbeit ist, die dem System in Form von Wärmeenergie entzogen wird. Je größer die Dämpfung ist, desto steiler verläuft die Dämpfungsschleife und mit ihr die Gerade durch die Scheitelpunkte der Hystereseschleife. Die Steigung dieser Geraden ist aber gleichbedeutend mit der dynamischen Federsteifigkeit im "Betriebspunkt" (unter statischer Vorlast) und unterscheidet sich mitunter deutlich von der Tangentensteigung der Federkennlinie – der statischen Steifigkeit - im gleichen Punkt (Abb. 8).

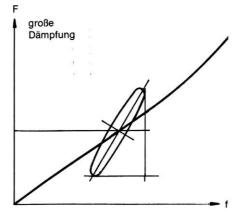


Abb. 8 Dynamisch beanspruchte Gummifedern mit unterschiedlicher Dämpfung

Größere Shorehärten bedeuten größere Dämpfung und damit höhere Federsteifigkeiten. Für dynamische Berechnungen kann somit die statische Steifigkeit nicht einfach übernommen werden, sondern muss mit einem geeigneten Faktor multipliziert werden. Aus diesem Grund ist bei Gummifedern das "dynamisch-statische Steifigkeitsverhältnis" stets zu berücksichtigen. Es nimmt mit höherer Frequenz und Shorehärte zu, mit steigender Amplitude ab und ist außerdem noch temperatur- und mischungsabhängig. In dem üblichen Härtebereich zwischen 35 und 95 sh gelten als Richtwerte für das Steifigkeitsverhaltnis 1,1 bis 3,0.

Mit der Einführung des Dämpfungsgrades D lassen sich die Bewegungsgleichungen (1.2.2), (1.2.3) und (1.2.4) auf eine zweckmäßigere Form bringen:

1.
$$\ddot{x} + 2 D \omega_o \dot{x} + \omega_o^2 x = \omega_o^2 s_1 \cos \Omega t$$

$$s_1 = \frac{F_0}{m\omega_0^2}$$

2.
$$\ddot{x}$$
 + 2 D ω_o \dot{x} + ω_o^2 x = Ω^2 s_2 cos Ωt

$$s_2 = \frac{m_e r}{m_o + m_e} = \frac{m_e r}{m}$$

3.
$$\ddot{x} + 2 D \omega_o \dot{x} + \omega_o^2 x = \omega_o [\omega_o \sin \Omega t + 2D\Omega \cos \Omega t] s_3$$
 $s_3 = u_o$

Die unbekannten Amplituden A dieser Bewegungsgleichungen ergeben sich mit dem partikulären Ansatz (1.0.2) und dem dimensionslosen Abstimmungsverhältnis

wie folgt: 1.
$$A = s_1 \frac{1}{\sqrt{(1 - \eta^2)^2 + 4 D^2 \eta^2}} = s_1 V_1$$

2.
$$A = s_2 \frac{\eta^2}{\sqrt{(1-\eta^2)^2+4D^2\eta^2}} = s_2 V_3$$

3.
$$A = s_3 \sqrt{\frac{1 + 4 D^2 \eta^2}{(1 - n^2)^2 + 4 D^2 \eta^2}} = s_3 V_2$$

SCHWINGUNGSTECHNIK

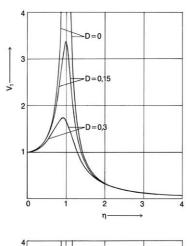
Dämpfung

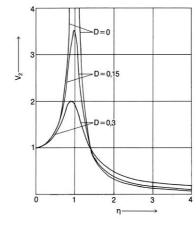
und die zugehörigen Phasenwinkel (Nacheilwinkel) errechnen sich aus:

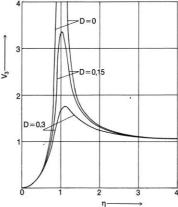
1.
$$\tan \varphi = \frac{2 \text{ D} \eta}{1 - n^2}$$
 (Krafterregung) (1.2.10a)

2.
$$\tan \varphi = \frac{2 \text{ Dn}}{1 - n^2}$$
 (Unwuchterregung) (1.2.11)

3.
$$\tan \varphi = \frac{2 \text{ D} \eta^3}{1 - n^2 + 4 \text{ D}^2 \eta^2}$$
 (Weg- oder Stützenerregung) (1.2.12a)


Neben den Wegamplituden A interessieren aber auch die Amplituden F der auf das Fundament übertragenen dynamischen Kräfte, die man durch Zusammenfassung der Kraftanteile kx und kx und cx bzw. k(x-u) und c(x-u) erhält:


1.
$$\hat{F} = F_o \sqrt{\frac{1 + 4 D^2 \eta^2}{(1 - \eta^2)^2 + 4 D^2 \eta^2}} = F_o V_2$$
 (1.2.13)


2.
$$\hat{F} = \frac{m_e r}{m} k \eta^2 V_2 = \frac{m_e r}{m} k V_4$$
 (1.2.14)

3.
$$\hat{F} = u_0 k \eta^2 V_2 = u_0 k V_4$$
 (Relativbewegung) (1.2.15)

Mit Hilfe der dimensionslosen Größen V₁, V₂, V₃ und V₄ sind die Schwingungen und die auf das Fundament übertragenen dynamischen Kräfte einer Maschine bestimmt. Dividiert man in den Gleichungen (1.2.10) bis (1.2.12) die Wegamplituden A durch die zugehörigen dimensionsbehafteten Werte s., s., s. und verfährt entsprechend bei den Kräften, so geben die jeweils gültigen V-Werte unmittelbar das Verhältnis von übertragenen zu erregenden Größen wieder, das seinerseits eine Funktion des Abstimmungsverhältnisses η und des Dämpfungsgrades D ist. Die Funktionen V., V., V., und V., werden als Vergrößerungsfunktionen bezeichnet, ihre Schaubilder zeigt die Abb. 9:

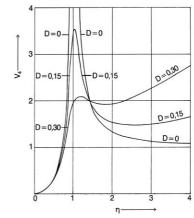


Abb. 9 Vergrößerungsfunktionen: V₁, V₂, V₃, V₄

Schwingungsisolation

Nimmt das Abstimmungsverhältnis $\eta = \Omega/\omega_0$ den Wert 1 an, spricht man von Resonanz. In diesem Fall werden die Amplituden bei geringer oder verschwindender Dämpfung sehr groß. Man nennt diesen Zustand (n = 1) kritisch. Für n < 1 wird von einer unterkritischen Erregung des Schwingers bzw. von einem hochabgestimmten System gesprochen, bei n < 1von überkritischer Erregung bzw. von einem tiefabgestimmten System. Dementsprechend sind auch die Bezeichnungen der Erregerkreisfreguenz Ω unterkritisch ($\Omega > \omega_z$), kritisch ($\Omega = \omega_z$) und überkritisch ($\Omega > \omega_{o}$).

In Abhängigkeit von der Dämpfung können für die VergrößerungsfunktionenV₁, V₂ und V₃ Werte des Abstimmungsverhältnisses η angegeben werden, für die die Funktionswerte maximal werden:

$$V_1$$
: $\eta \text{ max } = \Omega/\omega_0 = \omega_0/\omega_0 = \sqrt{1-2 D^2}$ (1.2.16)

$$\max V_1 = \frac{1}{2D\sqrt{1-D^2}} \tag{1.2.16a}$$

$$V_2$$
: $\eta \text{ max} = \Omega/\omega_0 = \omega_d/\omega_0 \approx \sqrt{1 - 2 D^2}$ (1.2.17)

$$\begin{array}{lll} V_2: & \eta \; \text{max} \; = \; \Omega/\omega_o = \omega_d/\omega_o \approx \; \sqrt{1-2\; D^2} \\ & \text{max} \; V_2 \approx \; \frac{1}{2D} \; \left(1 \; + \; \frac{5}{2} \; D_2\right) & \text{für (D<<1)} \\ & \text{für kleine D} & (1.2.17a) \end{array}$$

$$V_3$$
: $\eta \text{ max } = \Omega/\omega_0 = \omega_0/\omega_0 = \frac{1}{\sqrt{1 - 2 D^2}}$ (1.2.18)

$$\max V_3 = \frac{1}{2D\sqrt{1-D^2}} \tag{1.2.18a}$$

Auffallend ist, dass die Funktion V2 das Übertragungsverhalten in den Gleichungen (1,2,12) und (1,2,13) bestimmt. Damit tritt bei der Wegerregung die selbe Vergrößerungsfunktion wie für die dynamische Fundamentkraft bei konstanter Amplitude der Erregerkraft auf.

Schwingungsisolation heißt nun, durch geeignete Wahl des Abstimmungsverhältnisses 11 zu erreichen, dass die durch die Federung übertragenen dynamischen Kräfte nur noch einen Bruchteil der Erregerkräfte ausmachen. Im Falle der konstanten Amplitude der Erregerkraft Fo erzielt man die kleinste Schwingungsamplitude im tief abgestimmten Bereich ($\eta > 1$) nach der Gleichung (1.2.10):

$$\frac{A}{F_o/m{\omega_o}^2} = \frac{A}{F_o/k} = V_1 = \frac{1}{\sqrt{(1-\eta^2)^2 + 4\,D^2\eta^2}}$$

Für verschwindende Dämpfung (D = 0) wird V, im überkritischen Bereich negativ, an der Resonanzstelle tritt ein Phasensprung von 180° (tan $\varphi = 0$) auf, d. h. Schwingung und Zwangskraft sind in Gegenphase. Interessant ist aber nicht das Vorzeichen, sondern der Betrag der Schwingungsamplitude, der sich dann wie folgt

$$\frac{A}{F_0/k} = \frac{1}{|1 - n^2|} \tag{1.2.19}$$

Die Schwingungsamplitude A ist also dem Betrag nach gleich der statischen Einfederung unter der konstanten Erregerkraftamplitude, multipliziert mit dem Vergrößerungsverhältnis. Ist die Dämpfung vernachlässigbar, erhält man aus (1.2.13) dieselbe Beziehung für das Kraftübertragungsverhalten:

$$\frac{\hat{F}}{F_{c}} = \frac{1}{|1 - n^{2}|} \tag{1.2.20}$$

Beide Gleichungen geben also die "Durchlässigkeit" des Systems, die Erregergröße F. betreffend wieder. Folgerichtig kann dazu der Isolationsgrad als Differenzbetrag zu 100 % eingeführt werden:

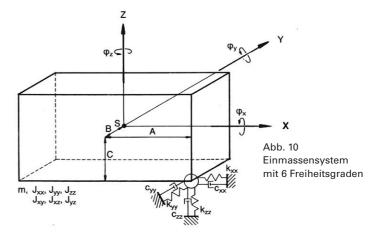
$$i = \left[1 - \frac{1}{|1 - n^2|}\right] \cdot 100 \, [\%]$$
 (1.2.21)

Die Schwingungsisolation ist somit eine Funktion des Abstimmungsverhältnisses 11. Während der Dämpfung praktische Bedeutung nur im Bereich 0,8 < n < 1,2 zukommt. Die Isolationswirkung beginnt nach (1.2.21) erst bei η-Werten, die größer als $\sqrt{2}$ sind, für $\eta = 2.5$ ist sie bereits 80 % und anzustreben sind Isolationsgrade von über 90% mit den entsprechenden n-Werten von 3 bis 5.

Wird die Dämpfung berücksichtigt, errechnet sich der Isolationsgrad allgemein zu:

$$i = [1 - V] \cdot 100 \, [\%]$$
 (1.2.22)

Für V ist die jeweils gültige Vergrößerungsfunktion einzusetzen.



SCHWINGUNGSTECHNIK (ANHANG)

2. Linearer Schwinger mit 6 Freiheitsgraden (starrer Körper)

Wie bereits erwähnt, lassen sich viele Schwingungsprobleme mit dem Modell des Schwingers von einem Freiheitsgrad beschreiben und unter Anwendung der Gleichungen des ersten Abschnittes lösen. Sind jedoch, wie es bei den verschiedensten Aufgabenstellungen aus der täglichen Ingenieurpraxis der Fall ist, gleichzeitig Erregerkräfte und -momente in mehreren Richtungen wirksam, dann muss auch die entsprechende Anzahl von Freiheitsgraden eingeführt werden. Die Masse m wird jetzt als "starrer Körper" betrachtet, dessen Schwerpunkt

mit dem Ursprung eines räumlichen Koordinatensystems x, y, z zusammenfällt und dessen Bewegungskoordinaten der Einfachheit halber die gleiche Bezeichnung wie die Koordinatenachse tragen. Neben Schwerpunktverschiebungen in den 3 Koordinatenrichtungen sind Drehbewegungen $\phi_{v'}$, $\phi_{v'}$ und ϕ_{z} des starren Körpers um die Koordinatenachsen möglich, so dass ein Einmassensystem mit 6 Freiheitsgraden vorliegt (Abb. 10).

Die für dieses Modell entwickelte Theorie ist an gewisse Voraussetzungen geknüpft, und manche vereinfachende Annahme, besonders im Hinblick auf die dynamischen Federparameter, ist in ihr enthalten, die strenger Überprüfung nicht standhält. Nichtsdestoweniger hat sie sich seit Jahren bewährt bei der Untersuchung des statischen und dynamischen Verhaltens von elastisch gelagerten Massen wie Motoren, Generatoren, Pumpen, Fundamenten usw, und die auf ihr beruhenden Rechenprogramme gehören zu den am häufigsten

Es wurde bereits darauf hingewiesen, dass der Rechenaufwand bei Systemen von mehreren Freiheitsgraden erheblich wird und daher nur noch elektronisch bewältigt werden

kann. Die Bewegungsgleichungen enthalten nun weitere Feder- und Dämpfungskraftanteile, weshalb man sie kürzer und übersichtlicher in Matrizenschreibweise als beste Basis für rechnergestützte Lösungsverfahren formuliert. Hierbei fasst man nach Gleichung (1.0.1) die Massenparameter als Koeffizienten der Beschleunigungsgrößen zusammen und verfährt entsprechend mit den Dämpfungs- und Steifigkeitsparametern. Es entstehen zweidimensionale Zahlenfelder, die sich in Zeilen und Spalten untergliedern und als Matrix bezeichnet werden. Jedes Matrixelement (Koeffizient) erhält zwei Indizes, die seine Zeilen- und Spaltennummer angeben und es damit eindeutig kennzeichnen. Matrizen, die nur aus einer Zeile oder Spalte bestehen, heißen auch Vektoren.

2.1 Erzwungene (periodische) Schwingung des starren Körpers mit Dämpfung

Das allgemeine lineare Bewegungsgleichungssystem (1.0.1)

$$M\ddot{w} + C\dot{w} + Kw = f$$

liegt bereits in Matrixnotation vor. Großbuchstaben stehen für Matrizen, Kleinbuchstaben für Vektoren.

Es sind also: **M** = Massenmatrix, **C** = Dämpfungsmatrix, K = Steifigkeitsmatrix, f = Vektor der Kräfte und Momente, die am Schwerpunkt angreifen bzw. um die Systemachsen drehen. Der Verschiebungsvektor w und die aus ihm abgeleiteten Geschwindigkeiten und Beschleunigungen sind unbekannt.

Im Falle des Einmassensystems mit 6 Freiheitsgraden sind 6 Gleichungen zur Formulierung der Bewegungsgesetze für die unbekannten Verschiebungen und Verdrehungen w erforderlich. Sie können aus Energiebetrachtungen gewonnen werden und lauten unter der Voraussetzung, dass alle Federachsen parallel zu den Systemachsen verlaufen, d. h. Schräglagerung ausgeschlossen wird:

2.1 Erzwungene (periodische) Schwingung des starren Körpers mit Dämpfung

in x-Richtung

$$m\ddot{x} + \Sigma k_{xx} x + \Sigma c_{xx} \dot{x} + \Sigma k_{xx} C \phi_v + \Sigma c_{xx} C \dot{\phi}_v - \Sigma k_{xx} B \phi_z - \Sigma c_{xx} B \dot{\phi}_z = \hat{F}_x \cos{(\Omega t + \Psi_{tx})}$$
 (2.1.1a)

$$m\ddot{y} + \Sigma \, k_{yy} \, y + \Sigma \, c_{yy} \, \dot{y} \, - \Sigma \, k_{yy} C \, \phi_x \, - \, \Sigma \, c_{yy} C \, \dot{\phi}_x \, + \, \Sigma \, k_{yy} A \, \phi_z \, + \, \Sigma \, c_{yy} A \, \dot{\phi}_z \quad = \, \hat{F}_y \cos \left(\Omega t \, + \, \Psi_{ty}\right) \quad (2.1.1b)$$

$$m\ddot{z} + \sum k_{zz} z + \sum c_{zz} \dot{z} + \sum k_{zz} B \phi_x + \sum c_{zz} B \dot{\phi}_x - \sum k_{zz} A \phi_y - \sum c_{zz} A \dot{\phi}_y = \hat{F}_z \cos{(\Omega t + \Psi_{tz})}$$
 (2.1.1c)

Drehung um die x-Achse

Drehung um die y-Achse

$$\begin{array}{l} J_{yy}\; \ddot{\phi}_y\; -\; J_{yz}\; \ddot{\phi}_x\; -\; J_{yz}\; \ddot{\phi}_z\; +\; \Sigma\; k_{xx}C\; x\; +\; \Sigma\; c_{xx}C\; \dot{x}\; -\; \Sigma\; k_{zz}A\; z\; -\; \Sigma\; c_{zz}A\; \dot{z}\; \\ -\; \Sigma\; k_{zz}AB\; \phi_x\; -\; \Sigma\; c_{zz}AB\; \dot{\phi}_x\; +\; \Sigma\; (k_{xx}C^2\; +\; k_{zz}A^2)\; \phi_y\; +\; \Sigma\; (c_{xx}C^2\; +\; c_{zz}A^2)\; \dot{\phi}_y\; \\ -\; \Sigma\; k_{xx}BC\; \phi_z\; -\; \Sigma\; c_{xx}BC\; \dot{\phi}_z\; &=\; \hat{M}_v\; cos\; (\Omega t\; +\; \Psi_{rv}) \quad (2.1.1e) \end{array}$$

Drehung um die z-Achse

$$\begin{split} J_{zz} \, \ddot{\phi}_z \, - \, J_{zx} \, \ddot{\phi}_x \, - \, J_{zy} \, \ddot{\phi}_y \, - \, \Sigma \, k_{xx} B \, x \, - \, \Sigma \, c_{xx} B \, \dot{x} \, + \, \Sigma \, k_{yy} A \, y \, + \, \Sigma \, c_{yy} A \, \dot{y} \\ - \, \Sigma \, k_{yy} A C \, \phi_x \, - \, \Sigma \, c_{yy} A C \, \dot{\phi}_x \, - \, \Sigma \, k_{xx} B C \, \phi_y \, - \, \Sigma \, c_{xx} B C \, \dot{\phi}_y \\ + \, \Sigma \, (k_{xx} B^2 \, + \, k_{yy} A^2) \, \phi_z \, + \, \Sigma \, (c_{xx} B^2 \, + \, c_{yy} A^2) \, \dot{\phi}_z \, & = \, \hat{M}_z \cos \left(\Omega t \, + \, \Psi_{rz}\right) \end{split} \tag{2.1.1f}$$

In Elementschreibweise:

$$\begin{bmatrix} \mathsf{m} & \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{m} & \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{m} & \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{m} & \mathsf{0} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{m} & \mathsf{0} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{J}_{\mathsf{xx}} & \mathsf{J}_{\mathsf{xy}} & \mathsf{J}_{\mathsf{xz}} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{J}_{\mathsf{xx}} & \mathsf{J}_{\mathsf{yy}} & \mathsf{J}_{\mathsf{yz}} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{J}_{\mathsf{zx}} & \mathsf{J}_{\mathsf{yy}} & \mathsf{J}_{\mathsf{yz}} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{J}_{\mathsf{zx}} & \mathsf{J}_{\mathsf{yy}} & \mathsf{J}_{\mathsf{yz}} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{J}_{\mathsf{zx}} & \mathsf{J}_{\mathsf{yy}} & \mathsf{J}_{\mathsf{zz}} \\ \end{bmatrix} \quad \begin{matrix} \ddot{\mathsf{x}} \\ \ddot{\mathsf{y}} \\ & \mathsf{v}_{\mathsf{x}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \ddot{\mathsf{y}} \\ \ddot{\mathsf{y}} \\ & \mathsf{v}_{\mathsf{y}} \\ & \mathsf{v}_{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \ddot{\mathsf{y}} \\ \ddot{\mathsf{y}} \\ \ddot{\mathsf{y}} \\ & \mathsf{v}_{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \ddot{\mathsf{y}} \\ & \mathsf{v}_{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ & \mathsf{v}_{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}} \\ \end{pmatrix} \quad \begin{matrix} \dot{\mathsf{x}} \\ \dot{\mathsf{y}} \\ \dot{\mathsf{y}$$

								1		1		
	k ₁₁	k ₁₂	k ₁₃	k ₁₄	k ₁₅	k ₁₆	×		F _x (t)		$\hat{F}_{x} \cos(\Omega t + \Psi_{tx})$	(2.1.1a)
	k ₂₁	k ₂₂	k ₂₃	k_{24}	k ₂₅	k ₂₆	у		F _y (t)		$\hat{F}_{y} \cos(\Omega t + \Psi_{ty})$	(2.1.1b)
	k ₃₁	k ₃₂	k ₃₃	k ₃₄	k ₃₅	k ₃₆	z	_	F _z (t)	_	$\hat{F}_z \cos(\Omega t + \Psi_{tz})$	(2.1.1c)
	k ₄₁	k ₄₂	k_{43}	k_{44}	k ₄₅	k ₄₆	φ _x		M _× (t)		$\hat{M}_x \cos(\Omega t + \Psi_{rx})$	(2.1.1d)
	k ₅₁	k ₅₂	k ₅₃	k ₅₄	k ₅₅	k ₅₆	Фу		M _y (t)		$\hat{M}_{y} \cos(\Omega t + \Psi_{ry})$	(2.1.1e)
	k ₆₁	k ₆₂	k ₆₃	k ₆₄	k ₆₅	k ₆₆	φ _z		M _z (t)		$\hat{M}_z \cos(\Omega t + \Psi_{rz})$	(2.1.1f)
L	-								<u> </u>	J		
			-	,								

 $\hat{F}_{y}, \hat{F}_{y}, \hat{F}_{z} =$ Amplituden der im Massenschwerpunkt angreifenden harmonischen Kräfte

 $\hat{\mathbf{M}}_{\text{v}},\hat{\mathbf{M}}_{\text{v}}$ = Amplituden der harmonischen, im Uhrzeigersinn um die Koordinatenachsen drehenden Momente

ψ, ψ, = Phasenwinkel der Erregergrößen gleicher Erregerfrequenz

 Ω = Erregerkreisfrequenz

(Berechnung erfolgt für jede Harmonische getrennt)

REIFF

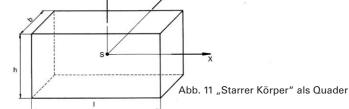
SCHWINGUNGSTECHNIK (ANHANG)

2.1 Erzwungene (periodische) Schwingung des starren Körpers mit Dämpfung

Als Sonderfall der Matrizenmultiplikation findet die Multiplikation einer Matrix mit einem Spaltenvektor in der Weise statt, dass, beginnend mit dem ersten Zeilenvektor der Matrix, das erste Zeilenelement mit dem ersten Spaltenelement, das zweite Spaltenelement mit dem zweiten Spaltenelement des Vektors usw. multipliziert wird und die (Skalar-)Produkte addiert werden. Verfährt man ebenso mit den übrigen Zeilenvektoren

und wendet das Rechenschema auf die gegebenen Massen-, Dämpfungs- und Steifigkeitsmatrizen an, erhält man schließlich das Gleichungssystem (2.1.1). Alle drei genannten Matrizen sind quadratisch (6 Zeilen und 6 Spalten) und außerdem symmetrisch, d. h. für ihre Elemente gilt: $a_{ik} = a_{ki}$. Es sind also pro Matrix maximal 21 Elemente zu berechnen.

Die Massenmatrix


Im einfachsten Fall kann der "starre Körper" als Quader betrachtet werden (z. B. Motorblock mit Symmetrieeigenschaften). Dann ist die Masse m dem Betrage nach gleich dem Motorgewicht und die (polaren) Massenträgheitsmomente können berechnet oder Formelsammlungen direkt entnommen werden (Abb. 11):

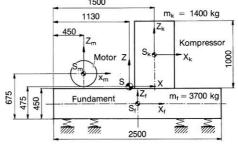
y-z-Ebene:
$$J_{xx} = \frac{m}{12} (b^2 + h^2)$$

x-z-Ebene:
$$J_{yy} = \frac{m}{12} (I^2 + h^2)$$

x-y-Ebene:
$$J_{zz} = \frac{m}{12} (I^2 + b^2)$$

Die Systemachsen sind gleichzeitig Symmetrieachsen, woraus folgt, dass die Zentrifugalmomente verschwinden: $J_{yy} = J_{yy} = J_{yz} = J_{zy} = J_{yz} = 0$

Häufiger jedoch besteht das System aus mehreren, starr miteinander verbundenen Einzelmassen, wie im Fall des abgebildeten Kompressorfundaments. Dann empfiehlt sich folgendermaßen vorzugehen:


- 1. Zerlegung des Systems in Einzelmassen m_{,r} mit Symmetrieeigenschaften. Die Massenschwerpunkte S, bildenden Ursprung von i Koordinatensystemen mit parallelen x-, y- und z-Achsen.
- 2. Festlegung eines Bezugskoordinatensystems (zweckmäßig ist die Wahl des Koordinatensystems einer Einzelmasse) und Berechnung der Koordinaten x_s, y_s und z_s des Gesamtschwerpunktes (Massenmittelpunkt) S aller Teilmassen m;

$$x_s = \frac{\sum x_i \, m_i}{\sum m_i} \qquad y_s = \frac{\sum y_i \, m_i}{\sum m_i} \qquad z_s = \frac{\sum z_i \, m_i}{\sum m_i} \qquad m = \sum m_i \qquad (2.1.2a\text{-d})$$

x,, y,, z, sind die Schwerpunktabstände der m, vom Ursprung des Bezugssystems

- 3. Bestimmung der drei Massenträgheitsmomente aller Einzelmassen, bezogen auf ihre eigenen Koordinatenachsen (Eigenanteile). Die zugehörigen Zentrifugalmomente sind wegen der vorausgesetzten Symmetrie gleich Null.
- 4. Die Berechnung der Massenträgheitsmomente J_{xx} , J_{yy} und J_{yz} bezüglich der durch S verlaufenden Schwerachsen x, y und z erfolgt separat für jede der durch die Schwerachsen aufgespannten Ebenen, indem zu den "Eigenanteilen" die mit dem Quadrat des Abstandes Einzelschwerpunkt-Gesamtschwerpunkt multiplizierten Massen m, (Satz von STEINER) addiert werden. Die jeweiligen Zentrifugalmomente J., J., und J., errechnen sich wegen der fehlenden Eigenanteile nur aus den "Steiner"-Anteilen für Zentrifugalmomente als Produkte der Massen m, mit den vorzeichenbehafteten Koordinatenwerten der S, relativ zu S. Sie können, im Gegensatz zu Massenträgheitsmomenten, auch negativ werden.

Das Verfahren soll am Beispiel des Kompressorfundaments (Abb. 12) veranschaulicht werden:

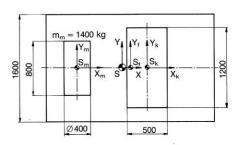


Abb. 12 Schwingungsisolierte Aufstellung eines Kolbenkompressors

Die Massenmatrix

- 1. Das System besteht aus den Teilmassen m_{rr} $m_{m_{rr}}$ und m_{kr} (Fundament, Motor und Kompressor).
- 2. Das Bezugskoordinatensystem liege im Ursprung von m., Mit den Abmessungen und Gewichtsangaben der Abb. 12 sind die Gesamtschwerpunktkoordinaten:

$$\begin{array}{l} x_s \ = \ \frac{0 \cdot 3700 \ - \ 800 \cdot 1400 \ + \ 250 \cdot 1400}{6500} \ \approx \ - \ 120 \ mm \\ \\ y_s \ = \ 0 \ (wegen \ Symmetrie \ zur \ Längsachse) \\ z_s \ = \ \frac{0 \cdot 3700 \ + \ 450 \cdot 1400 \ + \ 725 \cdot 1400}{6500} \ \approx \ + \ 250 \ mm \end{array}$$

3. Massenträgheitsmomente, bezogen auf die eigenen Systemachsen (Eigenanteile):

$$J_{xfxf} = \frac{3700}{12} (1.6^2 + 0.45^2) = 852 \text{ kgm}^2$$

$$J_{ykyk} = \frac{1400}{12} (0.5^2 + 1.0^2) = 146 \text{ kgm}^2$$

$$J_{xmxm} = 1400 \left(\frac{0.4^2}{16} + \frac{0.8^2}{12} \right) = 89 \text{ kgm}^2$$

$$J_{zfzf} = \frac{3700}{12} (2.5^2 + 1.6^2) = 2716 \text{ kgm}^2$$

$$J_{xkxk} = \frac{1400}{12} (1.2^2 + 1.0^2) = 285 \text{ kgm}^2$$

$$J_{zmzm} = 1400 \left(\frac{0.4^2}{16} + \frac{0.8^2}{12} \right) = 89 \text{ kgm}^2$$

$$J_{yfyf} = \frac{3700}{12} (2.5^2 + 0.45^2) = 1990 \text{ kgm}^2$$

$$J_{zkzk} = \frac{1400}{12} (0.5^2 + 1.2^2) = 197 \text{ kgm}^2$$

$$J_{ymym} = \frac{1400 \cdot 0.4^2}{8} = 28 \text{ kgm}^2$$

4. Massenträgheitsmomente, bezogen auf die Schwerachsen:

$$\begin{array}{lll} J_{xx} = 852 + 3700 \cdot 0.25^2 + 89 + 1400 \cdot 0,2^2 + 285 + 1400 \cdot 0,475^2 & = 1829 \text{ kgm}^2 \\ J_{yy} = 1990 + 3700 (0,12^2 + 0,25^2) + 28 + 1400 (0,68^2 + 0,2^2) & = 3659 \text{ kgm}^2 \\ & + 146 + 1400 (0,37^2 + 0,475^2) & = 3659 \text{ kgm}^2 \\ J_{xy} = 2716 + 3700 \cdot 0,12^2 + 89 + 1400 \cdot 0,68^2 + 197 + 1400 \cdot 0,37^2 & = 3894 \text{ kgm}^2 \end{array}$$

Zentrifugalmomente, bezogen auf die Schwerachsen:

J = 0, da alle Schwerpunkte auf der x-Achse (Symmetrieachse) liegen und damit die y-Werte verschwinden.

J. = 0, mit der gleichen Begründung

 $J_{xx} = 3700 \cdot (+0,12) \cdot (-0,25) + 1400 \cdot (-0,68) \cdot (+0,2) + 1400 \cdot (+0,37) \cdot (+0,475) = -55 \text{ kgm}^2$

Die Massenträgheits- und Zentrifugalmomente sind für ein Koordinatensystem berechnet worden, dessen Achsen parallel zu den Federachsen verlaufen. Es ist jedoch möglich, dieses System so um seinen im Schwerpunkt liegenden Ursprung zu drehen, dass die Massenträgheitsmomente extremal und die Zentrifugalmomente gleich Null werden.

Man spricht in diesem Falle von Trägheitshauptachsen und Hauptträgheitsmomenten. Ihre Lage bzw. Größe lässt sich aus den bekannten Massen- und Zentrifugalmomenten ermitteln.

Die Steifigkeitsmatrix

Koeffizientenvergleich der Verschiebungsgrößen in Gleichung (2.1.1) führt sofort auf die benötigten Elemente k, der Steifigkeitsmatrix K:

 $\mathbf{k}_{11} = \Sigma \mathbf{k}_{xx}$ Σ = Summation über die Anzahl der Lager

 $k_{12} = k_{13} = k_{14} = 0$ (da Schräglagerung nicht berücksichtigt wird)

(für jedes Lager wird das Produkt aus Längssteifigkeit und vertikalem Schwerpunktabstand gebildet und die $\mathbf{k}_{15} = \Sigma \mathbf{k}_{xx} \mathbf{C}$ Produkte aufsummiert)

gummi-metallprodukte@reiff-gruppe.de / www.reiff-tp.com

 $k_{16} = -\sum k_{yy}B$ $\mathbf{k}_{22} = \Sigma \mathbf{k}_{yy}$ $k_{23} = k_{23} = 0$ $k_{35}^{24} = -\sum_{z=1}^{yy} k_{zz}A$ $k_{45} = -\sum_{z=1}^{yy} k_{zz}AB$ $k_{33} = \sum k_{77}^{77}$ $k_{24} = \sum k_{22}B$ $k_{44} = \Sigma (k_{vv} C^2 + k_{yy} B^2)$ $k_{46} = -\sum k_{yy}AC$ $k_{55} = \Sigma (k_{xx} C^2 + k_{zz} A^2)$ $k_{66} = \Sigma (k_{xx} B^2 + k_{yy} A^2)$

REIFF

REIFF

SCHWINGUNGSTECHNIK (ANHANG)

Die Dämpfungsmatrix

Wie bereits erwähnt, ist die Dämpfung keine konstante Größe, sondern unter anderem abhängig von der statischen Federvorlast, Schwingungsamplitude und Erregerfrequenz. Das trifft aber auch auf die dynamische Steifigkeit zu, die mit der Dämpfung über die Gleichung (1.2.1) verknüpft ist. Für dynamische Berechnungen müssten demnach die Federwerte belastungsabhängig ermittelt werden, was vielfach mit einem hohen messtechnischen Aufwand verbunden ist. Mit den gemessenen Dämpfungskonstanten können die Elemente c, der Matrix C analog zu den k, der Steifigkeitsmatrix K gebildet werden.

In den meisten Fällen genügt es jedoch, für die interessierenden Schwingungsverläufe Höchstwerte anzugeben. Nach (1.2.16a) ist max V, die Resonanzüberhöhung Q, für die bei kleinen Dämpfungsgraden (D < 0,14) gilt: $Q \approx \frac{1}{2D}$ oder $D \approx \frac{1}{2Q}$. Andererseits ist $D = \frac{c}{2\sqrt{km}}$, woraus durch Gleichsetzen der bei den Dämpfungsausdrücke im Resonanzfall folgt: $c = \frac{\sqrt{km}}{2}$. Die Resonanzüberhöhung Q liegt bei niedrigdämpfenden Elastomeren im Bereich zwischen 8 und 20 und würde noch bei hochdämpfenden Elastomeren (Q > 4) brauchbare Näherungswerte ergeben. Mit den bekannten dynamischen Steifigkeiten und Dämpfungsgraden lassen sich die Dämpfungskonstanten demnach in der für die elektronische Berechnung besonders geeigneten Form angeben:

$$c_{xx} = \frac{\sqrt{k_{xx} \cdot m'}}{Q} \qquad \qquad c_{yy} = \frac{\sqrt{k_{yy} \cdot m'}}{Q} \qquad \qquad c_{zz} = \frac{\sqrt{k_{zz} \cdot m'}}{Q} \qquad \qquad (2.1.3a\text{-c})$$

Hierin ist m' der Anteil der Gesamtmasse m. der auf das betreffende Lager entfällt. Im allgemeinen Fall gleichmäßiger Lastverteilung teilt man die Gesamtmasse durch die Lageranzahl.

Liegen nun seitens des Maschinenherstellers Angaben über die Erregergrößen vor oder sind diese bestimmt, so können das lineare Differentialgleichungssystem zweiter Ordnung (2.1.1) mit jeder geeigneten Methode gelöst und die unbekannten zeitabhängigen Schwerpunktverschiebungen und Achsenverdrehungen w berechnet werden.

Mathematisch gesehen besteht die Lösung aus einem allgemeinen und partikulären Teil, wobei der allgemeine Teil Ausdrücke enthält, die die freie gedämpfte Schwingung (f = 0) beschreiben. In einem gedämpften System klingen diese freien Schwingungen jedoch schnell ab, und es gilt das bereits bei der Diskussion des Systems von einem Freiheitsgrad Gesagte: die resultierende, stationäre Bewegung erfolgt in allen Richtungen im Takte der Erregerfrequenz Ω nach dem allgemeinen Weg-Zeit-Gesetz:

(2.1.4)in Komponenten: $\mathbf{w}(t) = \hat{\mathbf{w}} \cos(\Omega t + \Phi)$ $w_1(t) = \hat{w}_1 \cos(\Omega t + \Phi_1) = x(t) = \hat{x} \cos(\Omega t + \Phi_{tx})$ (2.1.4a) $w_2(t) = \hat{w}_2 \cos(\Omega t + \Phi_2) = y(t) = \hat{y} \cos(\Omega t + \Phi_{tv})$ (2.1.4b) $w_3(t) = \hat{w}_3 \cos(\Omega t + \Phi_3) = z(t) = \hat{z} \cos(\Omega t + \Phi_{tz})$ (2.1.4c) $w_4(t) = \hat{w}_4 \cos(\Omega t + \Phi_4) = \phi_x(t) = \hat{\phi}_x \cos(\Omega t + \Phi_{rx})$ (2.1.4d) $w_5(t) = \hat{w}_5 \cos(\Omega t + \Phi_5) = \phi_v(t) = \hat{\phi}_v \cos(\Omega t + \Phi_{rv})$ (2.1.4e) $w_6(t) = \hat{w}_6 \cos(\Omega t + \Phi_6) = \phi_z(t) = \hat{\phi}_z \cos(\Omega t + \Phi_{rz})$ (2.1.4f)

 \hat{X} , \hat{Y} , \hat{Z} , $\hat{\Phi}_{X}$, $\hat{\Phi}_{V}$, $\hat{\Phi}_{Z}$ = unbekannte Amplituden Darin sind: Φ_{tx} , Φ_{ty} , Φ_{tz} , Φ_{rz} , Φ_{rz} , Φ_{rz} = zugehörige unbekannte Phasenwinkel

Aus dem allgemeinen Ausdruck: $w_{t}(t) = \hat{w}_{t} \cos{(\Omega t + \phi_{t})}$ lässt sich nun die der Verschiebungsgröße w_{t} entsprechende Geschwindigkeit und Beschleunigung ableiten und in das Gleichungssystem (2.1.1) einsetzen. Das Rechnen mit den Ansatzfunktionen (2.1.4) ist aber außerordentlich mühevoll. Man kann es umgehen, indem man sich eines mathematischen Hilfsmittels bedient, das in praktisch allen Ingenieurbereichen unverzichtbar ist und besonders in der Schwingungstechnik vorteilhaft angewendet wird: die komplexe Darstellung harmonischer Schwingungen. Wegen seiner großen Bedeutung soll anhand eines Beispiels der Begriff "komplex" erläutert werden:

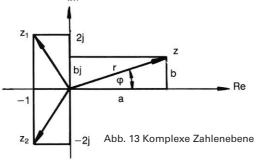
Die Lösung algebraischer Gleichungen kann zu Ausdrücken führen, die neben "reellen" Zahlenwerten auch Wurzeln mit negativen Radikanden enthalten. So lauten die Lösungen der Gleichung $z^2 + 2z + 5 = 0$: $z_1 = -1 + \sqrt{-4}$ und $z_2 = -1 - \sqrt{-4}$. Es gibt auf der reellen Zahlenachse keinen Wert, dessen Quadrat = − 4 ist. "Eindimensional" ist das Problem also nicht zu lösen. Der Ausdruck √-4 ist jedoch in die Faktoren $\sqrt{-1} \cdot \sqrt{4}$ zerlegbar und ergibt somit $2\sqrt{-1}$. Allgemein lässt sich jeder Wurzelausdruck mit negativem Radikanden als Produkt aus einer reellen Zahl und √-1 darstellen. Diese reellen Koeffizienten trägt man anschaulich auf einer zweiten Zahlengeraden ab, die senkrecht auf der reellen Achse steht und sie im Nullnunkt schneidet

Die Dämpfungsmatrix

Der reell nicht interpretierbare Ausdruck √-1 heißt definitionsgemäß imaginäre Einheit j (j² = −1); die zur reellen Achse orthogonale Zahlengerade wird als imaginäre Achse bezeichnet. In diesem Koordinatensystem können nun die Lösungen z, und z, durch Abtragen der reellen Werte -1 auf der reellen Achse und +2 bzw. -2 auf der imaginären Achse dargestellt werden.

Zahlen, die aus reellen und imaginären Anteilen bestehen, sind komplexe Zahlen. Ihr Betrag r ist gleich der Wurzel aus der Summe der Quadrate von Realteil und Imaginärteil. Jeder Punkt der durch die reelle und imaginäre Achse aufgespannten komplexen Zahlenebene stellt eine komplexe Zahl dar. Insbesondere besteht ein wichtiger Zusammenhang zwischen trigonometrischen und exponentiellen Größen nach der EULERschen Formel:

$$e^{i\varphi} = \cos \varphi + j \sin \varphi$$
 (2.1.5.)
 $e^{-i\varphi} = \cos \varphi - j \sin \varphi$ (2.1.5a)


Zwei komplexe Zahlen nennt man konjugiert (in Zeichen: z und z), wenn ihre Realteile gleich und ihre Imaginärteile sich nur durch das Vorzeichen unterscheiden. Die allgemeine Darstellung einer komplexen Zahl (und ihrer konjugierten) ist der Abb. 13 zu entnehmen:

$$z = a + jb = r (\cos \varphi + j \sin \varphi) = re^{j\varphi}$$
 (2.1.6.)
 $z = a - jb = r (\cos \varphi - j \sin \varphi) = re^{-j\varphi}$ (2.1.6.a)
 $|z| = r = \sqrt{a^2 + b^2}$ $\tan \varphi = b/a$

Darüberhinaus zeigt die Abbildung auch die beiden konjugiert komplexen Zahlen z., und z.:

Man kann nun w_(t) als den Imaginärteil eines in der komplexen Zahlenebene mit der Winkelgeschwindigkeit Ω umlaufenden Zeigers

$w_{p}(t) = Im(z(t))$	(2.1.7)
$z = Ae^{j(\Omega t + \Phi)}$	(2.1.8a)
$= A e^{j\Phi} e^{j\Omega t}$	(2.1.8b)
IzI = A	(2.1.9)

Der Betrag der komplexen Zahl z ist also gleich dem Betrag des umlaufenden Zeigers und damit auch gleich der Schwingungsamplitude A. Mit der EULERschen Formel kann der Lösungsansatz (2.1.4) für jede Verschiebungsrichtung folgendermaßen geschrieben werden:

$$\mathbf{w}_{n}(t) = \hat{\mathbf{w}}_{n} e^{\mathbf{j}(\Omega t + \Phi_{n})} = \hat{\mathbf{w}}_{n} \cos(\Omega t + \Phi_{n}) + \mathbf{j} \hat{\mathbf{w}}_{n} \sin(\Omega t + \Phi_{n})$$
(2.1.10)

Zu dem reellen Lösungsansatz (2.1.4) ist durch die Exponentialfunktion ein imaginärer Anteil addiert worden, was den weiteren Rechengang erheblich erleichtert. Schließlich ergibt die Vereinfachung des Exponents in (2.1.10):

$$\mathbf{w}_{\mathbf{n}}(t) = \hat{\mathbf{w}}_{\mathbf{n}} e^{\mathbf{j}(\Omega t + \Phi_{\mathbf{n}})} = \hat{\mathbf{w}}_{\mathbf{n}} e^{\mathbf{j}\Phi_{\mathbf{n}}} e^{\mathbf{j}\Omega t} = \hat{\mathbf{w}}_{\mathbf{n}} e^{\mathbf{j}\Omega t}$$
(2.1.10a)

 $\widehat{\widetilde{W}}_{n}$ wird *komplexe Amplitude* genannt und in Abb. 14 gezeigt.

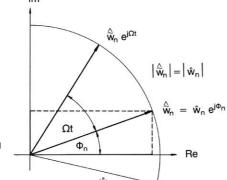


Abb. 14 Indikatordiagramm der harmonischen Schwingung

SCHWINGUNGSTECHNIK (ANHANG)

Die Dämpfungsmatrix

Die Tilde ~ bedeutet, dass der betreffende Ausdruck komplex ist, d. h. um einen imaginären Anteil erweitert wurde. Alle im Folgenden mit einer Tilde gekennzeichneten Ausdrücke bestehen aus Real- und Imaginärteil. Der bekannte Belastungsvektor f ist von der gleichen Bauart wie der Vektor w der unbekannten Verschiebungen und daher analog zu (2.1.10a):

$$f_n(t) = \hat{f}_n e^{j(\Omega t + \Psi_n)} = \hat{f}_n e^{j\Psi_n} e^{j\Omega t} = \hat{f}_n e^{j\Omega t}$$
 (2.1.11)

mit der komplexen Erregeramplitude: $\hat{f}_n = \hat{f}_n e^{j\psi_n}$

In den Gleichungen (2.1.10) und (2.1.11) ist statt des Gleichheitszeichens das Symbol ê verwendet worden, um das Hinzufügen von Imaginärteilen anzuzeigen.

Aus (2.1 .10a) lassen sich die Geschwindigkeiten w

, und Beschleunigungen w

, ableiten:

$$w_n(t) = \stackrel{\hat{\wedge}}{w}_n e^{j\Omega t}$$
 $\dot{w}_n(t) = j\Omega \stackrel{\hat{\wedge}}{w}_n e^{j\Omega t}$ $\ddot{w}_n(t) = -\Omega^2 \stackrel{\hat{\wedge}}{w}_n e^{j\Omega t}$

Sie ergeben, zusammen mit (2.1.1 1) in 2.1.1) eingesetzt:

$$\mathbf{M}(-\Omega^2 \stackrel{\triangle}{\mathbf{w}}) e^{j\Omega t} + \mathbf{C}j\Omega \stackrel{\triangle}{\mathbf{w}} e^{j\Omega t} + \mathbf{K} \stackrel{\triangle}{\mathbf{w}} e^{j\Omega t} = \stackrel{\triangle}{\mathbf{f}} e^{j\Omega t}$$
(2.1.12)

Nach Division mit eint nimmt das Gleichungssystem (2.1.12) die Form

$$(\mathbf{K} - \Omega^2 \mathbf{M} + j\Omega \mathbf{C}) \hat{\widetilde{\mathbf{w}}} = \hat{\widetilde{\mathbf{f}}}$$
 (2.1.12a)

Der Klammerausdruck kann abgekürzt als Matrix $\tilde{\mathbf{S}}$, geschrieben werden:

$$\widetilde{\mathbf{S}} \stackrel{\triangle}{\mathbf{w}} = \widetilde{\mathbf{f}} \tag{2.1.12b}$$

Daraus folgt:
$$\hat{\mathbf{w}} = \hat{\mathbf{S}}^{-1}\hat{\mathbf{f}}$$
 (2.1.13)

Die Matrix $\tilde{\mathbf{S}}^{-1}$ wird als Kehrmatrix von $\tilde{\mathbf{S}}$ bezeichnet. Ihre Berechnung gehört zu den Standardoperationen des Matrizenkalküls. Ob nun das Gleichungssystem (2.1 .12b) oder (2.1.13) gelöst wird, hängt von dem verfügbaren Rechenprogramm ab. Da alle beteiligten Größen komplex sind, müssen die Programme auch für komplexe Algebra ausgelegt sein. Aber auch Standardroutinen zur Lösung linearer Gleichungssysteme können diese Aufgabe bewältigen, wenn die komplexen Größen zuvor in allgemeine Form, d. h. in Realund Imaginärteil aufgespalten, gebracht werden:

$$\widetilde{\mathbf{S}} = \mathbf{S}_r + j\mathbf{S}_i$$
 $\hat{\widetilde{\mathbf{w}}} = \hat{\mathbf{w}}_r + j\hat{\mathbf{w}}_i$ $\hat{\widetilde{\mathbf{f}}} = \hat{\mathbf{f}}_r + j\hat{\mathbf{f}}_i$ (2.1.14a-c)

 $(\mathbf{S}_r + j\mathbf{S}_i)(\hat{\mathbf{w}}_r + j\hat{\mathbf{w}}_i) = \hat{\mathbf{f}}_r + j\hat{\mathbf{f}}_i$ Dann wird (2.1.12b): (2.1.15)

oder ausmultipliziert:
$$\mathbf{S}_r \hat{\mathbf{w}}_r - \mathbf{S}_i \hat{\mathbf{w}}_i + j \left(\mathbf{S}_r \hat{\mathbf{w}}_i + \mathbf{S}_i \hat{\mathbf{w}}_r \right) = \hat{\mathbf{f}}_r + j \hat{\mathbf{f}}_i$$
 (2.1.15a)

Zwei komplexe Größen sind nur dann gleich, wenn sie in ihren Real- und Imaginärteilen übereinstimmen. Daraus folgt unmittelbar:

 $S_r = \text{Realteil der Matrix } \widetilde{S}$

 $S_i = \text{Imaginärteil der Matrix } \widetilde{S}$ $= \Omega C$

Die Komponenten des Belastungsvektors 🔓 sind nach Real- und Imaginärteilen getrennt:

$$\hat{\boldsymbol{f}}_{r} = \begin{bmatrix} \hat{\boldsymbol{f}}_{x} \cos \boldsymbol{\psi}_{tx} \\ \hat{\boldsymbol{f}}_{y} \cos \boldsymbol{\psi}_{ty} \\ \hat{\boldsymbol{f}}_{z} \cos \boldsymbol{\psi}_{tz} \\ \hat{\boldsymbol{M}}_{x} \cos \boldsymbol{\psi}_{rz} \\ \hat{\boldsymbol{M}}_{y} \cos \boldsymbol{\psi}_{ry} \\ \hat{\boldsymbol{M}}_{z} \cos \boldsymbol{\psi}_{rz} \end{bmatrix} \qquad \hat{\boldsymbol{f}}_{i} = \begin{bmatrix} \hat{\boldsymbol{f}}_{x} \sin \boldsymbol{\psi}_{tx} \\ \hat{\boldsymbol{f}}_{y} \sin \boldsymbol{\psi}_{ty} \\ \hat{\boldsymbol{f}}_{z} \sin \boldsymbol{\psi}_{tz} \\ \hat{\boldsymbol{M}}_{x} \sin \boldsymbol{\psi}_{rz} \\ \hat{\boldsymbol{M}}_{y} \sin \boldsymbol{\psi}_{ry} \\ \hat{\boldsymbol{M}}_{z} \sin \boldsymbol{\psi}_{rz} \end{bmatrix}$$

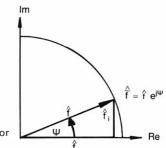
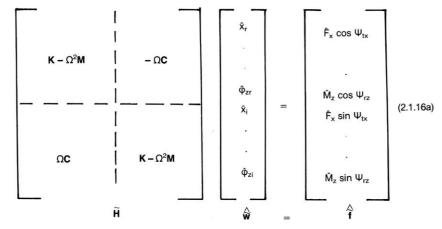



Abb. 15 Belastungsvektor

Die Dämpfungsmatrix

Sind die Erregerfrequenz Ω und der Belastungsvektor 🛉 gegeben, ist das gesamte lineare Gleichungssystem mit geeigneten Standardmethoden lösbar. Durch die notwendige Zerlegung hat sich der Aufwand erhöht, die Zahl der Gleichungen auf zwölf verdoppelt. Wie die Gleichung (2.1.16) zeigt, besteht die Koeffizientenmatrix der Verschiebungen selbst wieder aus den Matrizen S. und S. Eine Matrix, deren Elemente Matrizen sind, nennt man Über- oder Hypermatrix. Für die mit H bezeichnete Koeffizientenmatrix müssen jetzt die Elemente h., bis h., bestimmt werden. Dazu ist zunächst einmal die Berechnung der Matrixelemente von S, notwendig. Sie erhält man, wenn man von jedem Element der Steifigkeitsmatrix \mathbf{K} das mit Ω^2 multiplizierte Element der Massenmatrix \mathbf{M} mit gleichen Indizes subtrahiert. Damit sind bereits die Elemente h, bis h, et festgelegt und auch die Elemente h, bis h, sur/, wenn die Zeilen- und Spaltenindizes jeweils um 6 erhöht werden. Die noch fehlenden Elemente entsprechen den mit Ω multiplizierten Dämpfungsmatrixelementen, deren Vorzeichen bei Elementen mit einem Spaltenindex > 6 wechselt:

Als Lösung ergeben sich die 12 Amplituden:

$$\hat{\bm{w}}_r \; = \; (\hat{x}_r, \, \hat{y}_r, \, \hat{z}_r, \, \hat{\phi}_{xr}, \, \hat{\phi}_{yr}, \, \hat{\phi}_{zr}) \qquad \quad \hat{\bm{w}}_i \; = \; (\hat{x}_i, \, \hat{y}_i, \, \hat{z}_i, \, \hat{\phi}_{xi}, \, \hat{\phi}_{yi}, \, \hat{\phi}_{zi})$$

Das Gleichungssystem (2.1.1) ist einschließlich der Erregungsfunktionen rein reell. Folglich können auch nur reelle Teile der Zeitfunktion als Lösungen für die Verschiebungen in Frage kommen:

Aus (2.1.17) lassen sich die Amplituden û sofort aus den bekannten Real- und Imaginärteilen angeben:

$$\hat{\mathbf{w}} = \sqrt{\hat{\mathbf{w}}_r^2 + \hat{\mathbf{w}}_i^2}$$
 Der Ansatz: $\cos \Phi = \hat{\mathbf{w}}_r / \sqrt{\hat{\mathbf{w}}_r^2 + \hat{\mathbf{w}}_i^2}$, $\sin \Phi = \hat{\mathbf{w}}_i / \sqrt{\hat{\mathbf{w}}_r^2 + \hat{\mathbf{w}}_i^2}$

liefert die vollständige Lösung:

$$\mathbf{w}(t) = \sqrt{\hat{\mathbf{w}}_r^2 + \hat{\mathbf{w}}_i^2} [\cos \Omega t \cos \underline{\Phi} - \sin \Omega t \sin \underline{\Phi}] = \hat{\mathbf{w}} \cos (\Omega t + \underline{\Phi})$$

$$\tan \underline{\Phi} = \hat{\mathbf{w}}_i / \hat{\mathbf{w}}_r$$
(2.1.18)

 ${f w}$ sind die auf den *Schwerpunkt* und die *Schwerachsen* bezogenen Verschiebungen und Verdrehungen, $\underline{\Phi}$ die zugehörigen Phasenwinkel relativ zu Ωt. In seine 6 Komponenten aufgespalten entspricht der Verschiebungsvektor w(t) dem Gleichungssystem der Weg-Zeit-Funktionen:

SCHWINGUNGSTECHNIK (ANHANG)

Die Dämpfungsmatrix

Schwerpunktverschiebungen und Achsenverdrehungen sind wichtige Zwischenergebnisse auf dem Wege zur Berechnung dynamischer Federwege und Schwingweiten interessierender Punkte der periodisch erregten Masse (z. 8. elastische Verbindungen von Anschlussleitungen an Motorgehäuse). Jede solche Massenpunktverschiebung u setzt sich aus einer direkten Translation der betreffenden Koordinate und den beiden Drehwinkeln der übrigen Koordinatenachsen, multipliziert mit den entsprechenden Achsenabständen, zusammen:

$$u_x = x + C \varphi_v - B \varphi_z$$
 $u_v = y + A \varphi_z - C \varphi_x$ $u_z = z + B \varphi_x - A \varphi_v$ (2.1.9a-c)

In der Gleichung (2.1.1 9) erfolgt nun, für jede Komponente getrennt, die Anpassung an die Lösung aus (2.1.16):

$$\begin{array}{llll} \hat{u}_{xr} = \hat{x}_{r} + C \, \hat{\phi}_{yr} - B \, \hat{\phi}_{zr} & \hat{u}_{xi} = \hat{x}_{i} + C \, \hat{\phi}_{yi} - B \, \hat{\phi}_{zi} & \hat{u}_{x} = \sqrt{\hat{u}_{xr}^{2} + \hat{u}_{xi}^{2}} \\ \hat{u}_{yr} = \hat{y}_{r} + A \, \hat{\phi}_{zr} - C \, \hat{\phi}_{xr} & \hat{u}_{yi} = \hat{y}_{i} + A \, \hat{\phi}_{zi} - C \, \hat{\phi}_{xi} & \hat{u}_{y} = \sqrt{\hat{u}_{yr}^{2} + \hat{u}_{yi}^{2}} \\ \hat{u}_{zr} = \hat{z}_{r} + B \, \hat{\phi}_{xr} - A \, \hat{\phi}_{yr} & \hat{u}_{zi} = \hat{z}_{i} + B \, \hat{\phi}_{xi} - A \, \hat{\phi}_{yi} & \hat{u}_{z} = \sqrt{\hat{u}_{zr}^{2} + \hat{u}_{zi}^{2}} \end{array}$$

Kraftübertragung

Zur Beurteilung der Isolationswirkung einer elastischen Lagerung oder zur Abschätzung der Körperschalldämmung ist es nützlich, die auf das Fundament wirkenden Beststörkräfte zu kennen. Die resultierenden, d. h. durch die Lagerung insgesamt übertragenen Kräfte und Momente lassen sich durch Auflösung der Gleichung (1.0.1) nach den durch die Federung übertragenen Kraftanteilen gewinnen:

$$\mathbf{C}\dot{\mathbf{w}} + \mathbf{K}\mathbf{w} = \mathbf{f} - \mathbf{M}\ddot{\mathbf{w}} \tag{2.1.20}$$

Zweimaliges Ableiten der Gleichung (2.1.17) nach der Zeit ergibt die noch unbekannte Beschleunigung:

$$\ddot{\mathbf{w}}(t) = -\Omega^2 \hat{\mathbf{w}}_t \cos \Omega t + \Omega^2 \hat{\mathbf{w}}_t \sin \Omega t \tag{2.1.21}$$

In der Gleichung (2.1.1) hat der Belastungsvektor die Form Formel 89, was in Analogie zu (2.1.17) und(2.1.18) seine Zerlegung in Realund Imaginärteil erlaubt:

$$\mathbf{f} = \hat{\mathbf{f}}_r \cos \Omega \mathbf{t} - \hat{\mathbf{f}}_i \sin \Omega \mathbf{t} \tag{2.1.22}$$

Mit den vorstehenden Gleichungen geht (2.1.20) in das System der übertragenen Kraftgrößen

$$\mathbf{T} = (\hat{\mathbf{f}}_r + \Omega^2 \mathbf{M} \hat{\mathbf{w}}_r) \cos \Omega t - (\hat{\mathbf{f}}_i + \Omega^2 \mathbf{M} \hat{\mathbf{w}}_i) \sin \Omega t$$
 (2.1.23)

über, deren Amplituden

$$|T| = \sqrt{(\hat{f}_r + \Omega^2 M \hat{w}_r)^2 + (\hat{f}_i + \Omega^2 M \hat{w}_i)^2}$$
(2.1.24)

mit den bekannten $\hat{\mathbf{f}}_r$ und $\hat{\mathbf{f}}_i$ jetzt berechenbar sind.

Für die Vertikalkomponente liefert (2.1.24) beispielsweise:

$$|T_{tz}| = \sqrt{(\hat{F}_z \cos \Psi_{tz} + \Omega^2 m \hat{z}_r)^2 + (\hat{F}_z \sin \Psi_{tz} + \Omega^2 m \hat{z}_i)^2}$$

2.2 Freie (ungedämpfte) Schwingung des starren Körpers

Gegenüber dem Einmassensystem von einem Freiheitsgrad hat sich die Zahl der Freiheitsgrade beim starren Körper um weitere fünf erhöht und mit ihr die Anzahl möglicher Resonanzstellen und zugehöriger Eigenfrequenzen. Für ihre Bestimmung ist der Einfluss der Dämpfung vernachlässigbar, wodurch sich die Gleichung (1.0.1) vereinfacht:

$$\mathbf{M}\ddot{\mathbf{w}} + \mathbf{K}\mathbf{w} = \mathbf{0} \tag{2.2.3}$$

Der Lösungsansatz mit unbekannten Amplituden und Nullphasenwinkeln $\mathbf{w}(t) = \hat{\mathbf{w}} \sin (\omega t + \underline{\phi}_0)$ (2.2.2)

führt unmittelbar auf das Gleichungssystem: $(\mathbf{K} - \omega^2 \mathbf{M}) \hat{\mathbf{w}} = \mathbf{0}$ (2.2.3)

das sich aber auch aus bereits bekannten Ergebnissen herleiten lässt, wenn die formale Übereinstimmung zwischen den Zeigerdiagrammen der Abb. 2 und Abb. 14 beachtet wird. Anstatt im Takt der Erregerfrequenz Ω schwingt das "freie" System nach seiner Auslenkung aus der Ruhelage gleichförmig mit seiner Eigenfrequenz $\underline{\omega}$, und an die Stelle des Phasenwinkels $\underline{\Phi}$ zwischen Massenerregung und -antwort ist der Nullphasenwinkel $\underline{\phi}_{\alpha}$ getreten, der aus den "Anfangsbedingungen" $\mathbf{w}(0) = \mathbf{w}_{(t-0)}$ und $\dot{\mathbf{w}}(0) = \dot{\mathbf{w}}_{(t-0)}$ berechnet wird. Der Lösungsansatz entspricht dann der Gleichung (2.1.10a):

$$W_n(t) = \hat{W}_n e^{j(\omega t + \phi_{on})} = \hat{W}_n e^{j\phi_{on}} e^{j\omega t} = \hat{W}_n e^{j\omega t}$$

Aus Gleichung.(2.1.16) wird bei fehlender Dämpfung und Belastung: $\hat{S}_{,\hat{W}_{,}} = 0$ und $\hat{S}_{,\hat{W}_{,}} = 0$ oder $(K - \omega^2 M) \hat{w}_r = 0$ und $(K - \omega^2 M) \hat{w}_i = 0$ (2.2.3a-b)

2.2 Freie (ungedämpfte) Schwingung des starren Körpers

Sind in der Massenmatrix M die Zentrifugalmomente von Null verschieden, so kommen die "Eigenwerte" we nicht nur in der "Hauptdiagonalen" (Elemente, deren Spalten- und Zeilenindex übereinstimmen) der Matrix S., sondern auch in anderen Koeffizienten vor. In diesem Fall spricht man von einem allgemeinen Eigenwertproblem, das durch Umformung der Mehrzahl der Lösungsverfahren zugänglich gemacht werden kann. Angestrebt wird eine Matrix S_.*, in der die Eigenwerte ω² lediglich in den Hauptdiagonalelementen erscheinen als Differenz einer noch zu berechnenden Matrix A und der mit dem unbekannten Parameter ω² multiplizierten Einheitsmatrix E. Bei der letzteren handelt es sich definitionsgemäß um eine Matrix, deren Hauptdiagonalelemente den Wert 1, alle übrigen Elemente den Wert 0 haben.

Allen bisher behandelten Matrizen ist gemeinsam, dass sie in Zeilen- und Spaltenanzahl übereinstimmen und demzufolge eine quadratische Koeffizientenanordnung besitzen. Einer quadratischen Matrix A kann eine Zahl Δ zugeordnet werden, die durch

$$\Delta = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 (2.2.4)

dargestellt ist und als Determinante der Ordnung n von A, geschrieben det (A), bezeichnet wird, äußerlich gekennzeichnet durch zwei senkrechte Begrenzungsstriche zur Unterscheidung von den bei Matrizen üblichen eckigen oder runden Klammern. Sie hat den Wert

$$\det A = \sum_{k=1}^{n} a_{ik} A_{ik}$$
 (2.2.5)

Darin ist A_n eine Determinante der Ordnung (n-1), die man durch Weglassen aller Elemente der i-ten Zeile und k-ten Spalte von a_n erhält und deren Vorzeichen bei ungeradzahliger Summe der Indizes (i + k) negativ wird. Sind zwei Zeilen (oder Spalten) einer Determinante gleich oder proportional zueinander, so ist ihr Wert gleich Null.

Matrizen, deren Determinanten von Null verschieden sind, werden als regulär, andernfalls als singulär bezeichnet. Zu jeder quadratischen nicht singulären Matrix M gehört eine zu ihr inverse Matrix M⁻¹ derart, dass gilt:

$$M^{-1}M = MM^{-1} = E$$
 (2.2.6)

Die in dieser Definition enthaltene Behauptung, dass die bei den Matrizen M und M⁻¹ im Produkt vertauschbar sind, kann bewiesen werden. Im allgemeinen Fall der Multiplikation zweier Matrizen gilt das kommutative Gesetz nicht, d. h. bei der Multiplikation einer Matrix U von links (vorn) mit einer Matrix V erzielt man ein anderes Ergebnis als bei Multiplikation von rechts (hinten). Der Begriff der inversen Matrix oder Kehrmatrix tauchte bereits im Abschnitt 2.1 auf. Dort gelangt man zu der Gleichung (2.1.13) durch Linksmultiplikation von (2.1.12b) mit §-1

Als nächster Schritt im Sinne der Aufgabensteilung wird nun die reguläre Massenmatrix M durch die Einheitsmatrix E ersetzt durch Linksmultiplikation von (2.2.3) mit M-1:

$$(M^{-1}K - \omega^2 M^{-1}M) \hat{w} = (M^{-1}K - \omega^2 E) \hat{w} = 0$$
 (2.2.7) und mit $A = M^{-1}K$: $(A - \omega^2 E) w = 0$ (2.2.8)

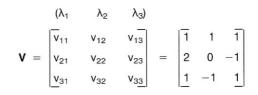
Das homogene Gleichungssystem (2.2.3) ist also durch Matrizenmultiplikation in die Form (2.2.8) mit den gewünschten Eigenschaften transformiert worden und liegt als spezielles Eigenwertproblem vor, für das diverse leistungsfähige Lösungsverfahren und Rechenprogramme existieren (siehe Literaturhinweis).

Man unterscheidet direkte und indirekte Lösungsverfahren, von denen die letzteren iterativ arbeiten und sich daher für die elektronische Berechnung besonders gut eignen. Zu den direkten Verfahren gelangt man durch Berücksichtigung der Tatsache, dass das Gleichungssystem (2.2.8) außer der "trivialen" Lösung $\hat{\mathbf{w}} = 0$ nur dann Lösungen hat, wenn gilt:

$$\det \mathbf{S}_{,}^{*} = \det (\mathbf{A} - \omega^{2} \mathbf{E}) = 0$$
 (2.2.9)

"Entwicklung" der Determinante (2.2.9) mit den unbestimmten Werten ω² nach Gleichung (2.2.5) führt im Falle des starren Körpers auf eine algebraische Gleichung höchstens 6. Grades in $\lambda = \omega^2$ deren Wurzeln λ die gesuchten Eigenwerte sind. Das Polynom $P(\lambda) = 0$ heißt charakteristische Gleichung, det (A – λ E) die charakteristische Determinante des speziellen Eigenwertproblems. Setzt man nun nacheinander die λ, in das Gleichungssystem (2.2.8) ein, entsteht eine dem Grad des Polynoms entsprechende Anzahl verschiedener homogener Gleichungssysteme, aus denen die Komponenten der zugehörigen Verschiebungsvektoren û bestimmt werden können. Die Verschiebungen ŵ, sind die zu jedem der 6 Eigenwerte λ, gehörenden Eigenvektoren. Wegen der Homogenität von (2.2.8) sind diese allerdings nur bis auf einen konstanten Faktor festgelegt, der willkürlich bleibt und beliebige Normierung erlaubt.

gummi-metallprodukte@reiff-gruppe.de / www.reiff-tp.com


SCHWINGUNGSTECHNIK (ANHANG)

2.2 Freie (ungedämpfte) Schwingung des starren Körpers

In Spalten angeordnet bilden die Eigenvektoren die Modalmatrix, während die mit λ multiplizierte Einheitsmatrix das Spektrum der Eigenwerte auf der Hauptdiagonalen wiedergibt und daher auch Spektralmatrix genannt wird. Durch die Modalmatrix sind die den einzelnen Eigenwerten zugeordneten Schwingungsformen bestimmt. Anhand eines Modells lassen sich die Begriffsdefinitionen anschaulich darstellen:

Zur Untersuchung der Biegeschwingungen eines an seinen Enden frei drehbar gelagerten Trägers der Länge I wird die kontinuierlich verteilte Trägermasse in drei gleichgroße Einzelmassen m aufgeteilt, die in vertikaler Richtung v schwingen (Abb. 16).

Durch diese willkürliche Aufteilung ist ein System von 3 Freiheitsgraden entstanden, dessen Modalmatrix V aus den Eigenvektoren $\hat{\mathbf{v}}_{i,i}\hat{\mathbf{v}}_{a}$ und $\hat{\mathbf{v}}_3$ besteht. Die Elemente der ersten Zeile sind auf "1" gesetzt:

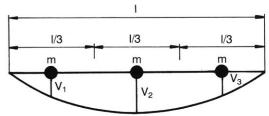
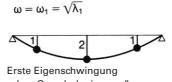
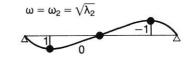
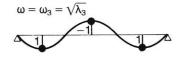





Abb. 16 Masseloser Balken mit 3 Einzelmassen

Dritte Eigenschwingung

oder "2. Oberschwingung"

Zweite Eigenschwingung oder "Grundschwingung" oder "1. Oberschwingung"

Abb. 17 Schwingungsformen am masselosen Balken mit 3 Einzelmassen

Die freie, ungedämpfte Balkenschwingung läuft mit der gewählten Normierung für die drei Massen nach folgendem Weg-Zeit-Gesetz ab:

$$\begin{split} \mathbf{v}_1 &= \mathbf{C}_1 \cdot 1 \cdot \sin(\omega_1 t + a_1) + \mathbf{C}_2 \cdot 1 \cdot \sin(\omega_2 t + a_2) + \mathbf{C}_3 \cdot 1 \cdot \sin(\omega_3 t + a_3) \\ \mathbf{v}_2 &= \mathbf{C}_1 \cdot 2 \cdot \sin(\omega_1 t + a_1) + \mathbf{C}_2 \cdot 0 \cdot \sin(\omega_2 t + a_2) - \mathbf{C}_3 \cdot 1 \cdot \sin(\omega_3 t + a_3) \\ \mathbf{v}_3 &= \mathbf{C}_1 \cdot 1 \cdot \sin(\omega_1 t + a_1) - \mathbf{C}_2 \cdot 1 \cdot \sin(\omega_2 t + a_2) + \mathbf{C}_3 \cdot 1 \cdot \sin(\omega_3 t + a_3) \end{split}$$

Aus den Zustandsgrößen zur Zeit t = 0 lassen sich die unbekannten C, und a, berechnen. Ausführlicher wird hierauf bei der freien Schwingung des starren Körpers mit beliebiger Modalmatrix eingegangen.

Streng genommen hat der betrachtete Balken eine kontinuierlich verteilte Masse und somit unendlich viele Eigenfrequenzen. Durch "Diskretisierung" des Systems, d. h. Zerlegung in Einzelmassen, kann sein Schwingungsverhalten aber beliebig genau erfasst werden. Im vorliegenden Fall betragen die Fehler gegenüber der "exakten" Lösung für w. 0 %, für w. 2 % und für w. 14,2 %. Interessant sind neben der Grundschwingung noch die erste, seltener die zweite Oberschwingung. Soll deren Frequenz präziser bestimmt werden, sind entsprechend der geforderten Genauigkeit mehr Massen einzuführen.

Symmetrie und Schwingungsentkopplung

Schwingungsfähige Systeme haben eine ihren Freiheitsgraden entsprechende Anzahl von Eigenvektoren und diese wiederum eine gleichgroße Anzahl von Komponenten, die Auskunft darüber geben, in welchem Verhältnis die Amplituden in den beteiligten Koordinatenrichtungen stehen, wenn das System frei schwingt. Man spricht in diesem Fall auch von Schwingungskopplung, die zu minimieren ein wichtiger Bestandteil schwingungs-isolierender Maßnahmen ist. Gelingt es nun, möglichst viele Komponenten der Eigenvektoren verschwinden zu lassen, ist das System in den betreffenden Koordinatenrichtungen entkoppelt. Da die Eigenvektoren aus der modifizierten Matrix ($\mathbf{K} - \omega^2 \mathbf{M}$) berechnet werden, müssen deren Nichtdiagonalelemente den Wert Null annehmen. Wie das erreicht wird, lässt sich am Beispiel eines symmetrischen starren Körpers verdeutlichen, für den keine Zentrifugalmomente existieren:

$k_{11} - m\omega^2$	0	0	0	k ₁₅	k ₁₆
0	k_{22} - $m\omega^2$	0	k ₂₄	0	k ₂₆
0	0	k_{33} – $m\omega^2$	k ₃₄	k ₃₅	0
0	k ₄₂	k ₄₃	$k_{44}\ -\ J_{xx}\omega^2$	k ₄₅	k ₄₆
k ₅₁	0	k ₅₃	k ₅₄	$k_{55}\ -\ J_{yy}\omega^2$	k ₅₆
k ₆₁	k ₆₂	0	k ₆₄	k ₆₅	$k_{66} - J_{zz}\omega^2$

Die in Elementschreibweise dargestellte Matrix ($\mathbf{K} - \omega^2 \mathbf{M}$) setzt einen starren Körper mit Achsensymmetrie und eine zu den Achsen parallele Lagerung voraus. In der vorliegenden Form enthält die Matrix keinen Zeilenvektor, der nicht irgendeine Komponente mit den übrigen gemeinsam hat, so dass totale Kopplung aller Koordinaten miteinander besteht. Im Idealfall ist die Matrix nur auf ihrer Hauptdiagonalen besetzt. Dann lautet beispielsweise die Gleichung in x-Richtung:

 $(k_{11} - m\omega^2) = \hat{x} = (\sum k_{00} - m\omega^2) \hat{x} = 0$

woraus $\omega^2 = \sum k_w/m$ sofort folgt. An die Stelle einer Masse mit 6 Freiheitsgraden sind rechnerisch 6 Massen mit einem Freiheitsgrad getreten, was totale Entkopplung und beträchtliche Rechenerleichterung bedeutet. Es werden zunächst Lagerungen betrachtet, deren Federn in ihren Steifigkeiten k..., k... und k... übereinstimmen. Letztere lassen sich aus den Nichtdiagonalelementen ausklammern, so dass nur noch über die vorzeichenbehafteten Lagerkoordinaten A, Bund C summiert wird. Bei Lagersymmetrie ist deren Summe und damit das betreffende Element gleich Null.

a) Lagerung symmetrisch zur x-z-Ebene

in diesem Fall gilt: $k \cdot \Sigma B = 0 = k_{16} = k_{61} = k_{43} = k_{45} = k_{64} = k_{66} = k_{66}$

Es entstehen zwei homogene Gleichungssysteme (2.2.11) und (2.2.12), in denen Kopplung zwischen \hat{x} , \hat{z} und $\hat{\phi}_{z}$, sowie \hat{y} , $\hat{\phi}_{z}$ und $\hat{\phi}_{z}$ besteht:

$$\begin{bmatrix} \Sigma \ k_{xx} - m\omega^2 & 0 & & \Sigma \ k_{zz} - m\omega^2 & -\Sigma \ k_{zz}A & & \Sigma \ (k_{xx}C^2 + k_{zz}A^2) - J_{yy}\omega^2 \end{bmatrix} & \hat{x} \\ \hat{z} \\ \hat{z} \\ \hat{\varphi}_y \end{bmatrix} = 0$$

$$\begin{bmatrix} \Sigma \ k_{yy} - m\omega^2 & -\Sigma \ k_{yy}C & & \Sigma \ (k_{yy}C^2 + k_{zz}B^2) - J_{xx}\omega^2 & -\Sigma \ k_{yy}AC \\ \Sigma \ k_{yy}A & & \Sigma \ k_{yy}AC & & \Sigma \ (k_{xx}B^2 + k_{yy}A^2) - J_{zz}\omega^2 \end{bmatrix} & \hat{\phi}_z \\ \hat{\phi}_z \end{bmatrix} = 0$$

b) Lagerung symmetrisch zur x-z-Ebene und y-z-Ebene

zusätzlich zu a) gilt die Bedingung: $k \cdot \Sigma A = 0 = k_{26} = k_{62} = k_{63} = k_{64} = k_{64} = k_{64}$ wodurch jeweils nur noch zwei gekoppelte Schwingungen

$$\begin{bmatrix} \Sigma k_{xx} - m\omega^2 & \Sigma k_{xx}C \\ \Sigma k_{xx}C & \Sigma (k_{xx}C^2 + k_{zz}A^2) - J_{yy}\omega^2 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{\phi}_y \end{bmatrix} = \mathbf{0}$$
 (2.2.13)

$$\begin{bmatrix} \Sigma k_{yy} - m\omega^2 & -\Sigma k_{yy}C \\ -\Sigma k_{yy}C & \Sigma (k_{yy}C^2 + k_{zz}B^2) - J_{xx}\omega^2 \end{bmatrix} \begin{bmatrix} \hat{y} \\ \hat{\phi}_x \end{bmatrix} = \mathbf{0}$$
 (2.2.14)

REIFF

SCHWINGUNGSTECHNIK (ANHANG)

Symmetrie und Schwingungsentkopplung

Die Vertikalschwingung z(t) und die Drehschwingung um die Hochachse $\phi_{s}(t)$ sind jetzt vollständig entkoppelt, ihre Eigenfrequenzen errechnen sich unmittelbar aus:

$$\begin{array}{ccc} \Sigma \; k_{zz} - m\omega^2 = 0 & (2.2.15) \\ \text{und} & \Sigma (k_{xy} \; B^2 + k_{yy} \; A^2) - J_{zz} \omega^2 = 0 & (2.2.16) \end{array}$$

Bei konstruktiv bedingter unsymmetrischer Lageranordnung ist eine Schwingungsentkopplung trotzdem möglich, wenn die Summe der Produkte aus Lagersteifigkeit und -koordinate ebenfalls Null wird. Das macht den Einsatz von Federn unterschiedlicher Steifigkeit

Lösungsmethoden

Für die elektronische Berechnung der Eigenwerte und -vektoren bedient man sich, wie gesagt, der indirekten Lösungsverfahren. Sie arbeiten nicht mit dem charakterischen Polynom, sondern iterativ, d. h. durch eine Folge geeigneter Matrizenmultiplikationen (Ähnlichkeitstransformationen) mit der Matrix A entsteht eine Matrix Δ, deren Hauptdiagonalelemente λ, die gesuchten Eigenwerte und deren übrige Elemente gleich Null oder beliebig klein sind.

Sind Programme verfügbar, welche das spezielle Eigenwertproblem (2.2.8) lösen ohne nach den Eigenschaften der Matrix A zu fragen, können die Lösungen direkt für weitere Berechnungen (z. B. Normierung der Eigenvektoren oder Umrechnung der Koppelkreisfreguenzen in [Hz] oder [U/min]) übernommen werden. Viele Programme basieren jedoch auf dem klassischen JACOBI-Verfahren, das aus der Mitte des vorigen Jahrhunderts stammt und inzwischen einige Modifikationen erfahren hat. Dieses relativ einfache Verfahren nutzt die Vorteile, die es mathematisch und rechentechnisch bei der Behandlung symmetrischer Matrizen gibt, hat aber den Nachteil, dass es eben nur auf diese anwendbar ist. Um es nutzen zu können, müsste die Matrix $A = M^{-1}K$ symmetrisch sein. Obwohl beide Matrizen M und K symmetrisch sind, geht diese Eigenschaft nicht auf die Matrix A über, wovon man sich leicht überzeugen kann, wenn man die in Elementschreibweise vorliegende Matrix ($\mathbf{K} - \omega^2 \mathbf{M}$) betrachtet. Zeilenweise Division mit den entsprechenden Elementen der Massenmatrix M ergibt beispielsweise

$$a_{34} = k_{34}/m$$
 und $a_{43} = k_{43}/J_{33}$

und damit Ungleichheit bei der Koeffizienten.

Bei den in der Ingenieurpraxis auftretenden Eigenwertproblemen sind M'K meist symmetrisierbare Matrizen. Eine als Verfahren von CHOLESKY bezeichnete Zerlegungsmethode hilft die Symmetrisierung schrittweise zu bewerkstelligen. Dazu nimmt man eine obere Dreiecksmatrix R (deren Elemente "unter" der Hauptdiagonalen gleich Null sind), transponiert sie durch Vertauschung der Zeilen und Spalten in die untere Dreiecksmatrix \mathbf{R}^{T} , bildet das Produkt aus beiden und setzt es gleich der Massenmatrix \mathbf{M} :

$$\mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{M} \tag{2.2.17}$$

Bei symmetrischer Matrix M und positiven Hauptdiagonalelementen m, lassen sich die Elemente der Dreiecksmatrizen rTi, aus M bestimmen. Mit der Beziehung (2.2.17) wird (2.2.3) zu

$$(\mathbf{K} - \omega^2 \, \mathbf{R}^\mathsf{T} \mathbf{R}) \, \hat{\mathbf{w}} = \mathbf{0} \tag{2.2.18}$$

und nach Linksmultiplikation mit RT-1:

$$(\mathbf{R}^{T_1}\mathbf{K} - \omega^2 \ \mathbf{R}^{T_1}\mathbf{R}^T\mathbf{R}) \ \hat{\mathbf{w}} = (\mathbf{R}^{T_1}\mathbf{K} - \omega^2\mathbf{E}\mathbf{R}) \ \hat{\mathbf{w}} = \mathbf{0}$$
 (2.2.19)

Wird R ausgeklammert, geht das Gleichungssystem (2.2.19) über in

$$(\mathbf{R}^{\mathsf{T-1}}\mathbf{K}\mathbf{R}^{\mathsf{-1}} - \omega^2 \mathbf{E}) \mathbf{R}\hat{\mathbf{w}} = 0 \tag{2.2.20}$$

Mit den Abkürzungen: $K^* = R^{T_1}KR^{-1}$ und $\hat{w}^* = R\hat{w}$ ergibt sich schließlich

$$(K^* - \omega^2 E) \hat{w}^* = 0$$
 (2.2.21)

Auf die Matrix K* gehen die Symmetrieeigenschaften von K über. Durch die Ähnlichkeitstransformationen bleiben die Eigenwerte unverändert, lediglich die Eigenvektoren beziehen sich jetzt auf ein anderes Koordinatensystem w* aus dem die auf das Ursprungssystem bezogenen Eigenvektoren ŵ mit der Rücktransformation

$$\hat{\mathbf{w}} = \mathbf{R}^{-1} \, \hat{\mathbf{w}}^* \tag{2.2.22}$$

zu gewinnen sind

Lösungsmethoden

Mit dem CHOLESKY-Verfahren ist unter den gemachten Voraussetzungen die Zerlegung einer "Vollmatrix" **M** möglich. Im Sonderfall einer nur auf der Hauptdiagonalen besetzten Massenmatrix, für verschwindende Zentrifugalmomente also, kommt man leichter zum Ziel durch Zerlegung von **M** in zwei gleiche Faktoren

$$\mathbf{M}^{1/2}\mathbf{M}^{1/2} = \mathbf{M}$$
 (2.2.23)

deren Diagonalelemente gleich der Wurzel aus den entsprechenden m_1 (m, m, m, J_{xx} , J_{yy} , J_{zz}) sind. Durch Einsetzen und Ausklammern ergeben sich folgende Zwischenergebnisse:

$$(K - \omega^2 M) \hat{w} = (K - \omega^2 M^{1/2} M^{1/2}) \hat{w} = (K M^{-1/2} - \omega^2 M^{1/2}) M^{1/2} \hat{w} = 0$$

Linksmultiplikation mit $\mathbf{M}^{-1/2}$ führt zu $(\mathbf{M}^{-1/2}\mathbf{K}\mathbf{M}^{-1/2} - \omega^2\mathbf{E}) \mathbf{M}^{1/2} \hat{\mathbf{w}} = \mathbf{0}$ (2.2.24)

Die Abkürzungen $\mathbf{K}^* = \mathbf{M}^{-1/2}\mathbf{K}\mathbf{M}^{-1/2}$ und $\hat{\mathbf{w}}^* = \mathbf{M}^{1/2}$ $\hat{\mathbf{w}}$ zeigen die formale Übereinstimmung mit (2.2.21) auf und es bleibt nur noch die Rücktransformation analog (2.2.22) mit $\mathbf{M}^{-1/2}$

Normierung

Das von der elektronischen Berechnung gelieferte Ergebnis sei nach endlich vielen Schritten eine Matrix **U**, die näherungsweise eine Diagonalmatrix ist und deren Diagonalelemente näherungsweise die gesuchten Eigenwerte sind. Als Konvergenz- bzw. Abbruchkriterium lässt sich (nach tTransformationen) die Quadratsumme der Nichtdiagonalelemente verwenden

$$S_t = \sum_{\substack{k=1\\i\neq k}}^{o} (u_{ik}^t)^2 \cdot \varepsilon$$

Dieses Kriterium wird auch In Rechenprogrammen benutzt, wobei e im Programm als Zahlenwert vorgegeben wird, der üblicherweise zwischen 10⁻⁸ und 10⁻⁸ liegt.

Parallel zu der Spektralmatrix \mathbf{U} wurde die Modalmatrix \mathbf{V} berechnet. so dass auch die den Eigenwerten \mathbf{u}_{k} zugeordneten Spaltenvektoren \mathbf{v}_{k} bekannt sind:

Im Idealfall vollständiger Schwingungsentkopplung ist jeder Koordinate eindeutig ein Eigenwert zuzuordnen. Die Hauptdiagonalelemente v_{kk} erhalten den Wert "1", alle Nichtdiagonalelemente sind Null. Bei gekoppelten Schwingungen geht diese Eindeutigkeit dem Kopplungsgrad entsprechend verloren, es ist aber möglich, mit Hilfe einer Selektionssystematik die vorherrschenden Koordinaten von Eigenwerten herauszufiltern. Dies wird beispielhaft an einem BASIC-Programmsegment aufgezeigt, in dem es mehr aufTransparenz und weniger auf knappen Programmierstil und optimale Speicherplatzausnutzung ankommen soll. Mit den bekannten Matrizen ${\bf U}$ und ${\bf V}$ läuft es wie folgt ab:

9500 REM**Normierung der Eigenvektoren** (Befehlssatz des Matrix-ROM HP Serie 80)

9510 REM** Bei Versionen ohne Matrizenbefehle sind Unterprogramme zu verwenden**

9520 MAT VH = ZER ! Eigenvektorsortiermatrix wird Nullmatrix

9530 MAT VHH = ZER ! Eigenvektorzwischenergebnismatrix wird Nullmatrix

MAT UHH = ZER ! Eigenwertzwischenergebnismatrix wird Nullmatrix

! Die Matrizen VH, VHH und UHH müssen bereits dimensioniert sein

9550 MAT VH = V ! VH wird Operationsmatrix

9560 FOR J = 1TO 6 9570 DISP MAXAR (V

9540

570 DISP MAXAB (VH) ! Suche des betragsgrößten Elements v_{Imax, Kmax}) 580 Imax = MAXABROW !Zeilenindex des betragsgrößten Elements

9590 Kmax = MAXABCOL ! Spaltenindex des betragsgrößten Elements

SCHWINGUNGSTECHNIK (ANHANG)

Normierung

9600	MATVHH (,Imax) = V (,Kmax)	! Umordnen des betreffenden Spaltenvektors und des
9610	UHH (Imax, Imax) = U (Kmax, Kmax)	!zugehörigen Eigenwertes
9620	FOR L = 1T0 6	
9630	VH $(Imax,L) = 0$!Damit die betreffenden Zeilen- und Spaltenelemente beim nächsten
9640	VH(L,Kmax) = 0	!Schleifendurchlauf nicht berücksichtigt werden.
9650	NEXT L	
9660	NEXT J	
9670	REM**Normierung der Eigenvektoren	und Umrechnung der Eigenwerte**
9680	FOR J = 1T0 6	
9690	FOR L = 1T0 6	
9700	V(L, J) = VHH(L, J) / VHH(J, J)	! Normierung nach den Diagonalelementen
9710	NEXT L	
9720	U(J, J) = SQR(UHH(J,J)) . 30/PI	! Umrechnung der Eigenwerte in Umdrehungen/Minute
9730	NEXT J	

Weg-Zeit-Gesetz der freien (ungedämpften) Schwingung des starren Körpers

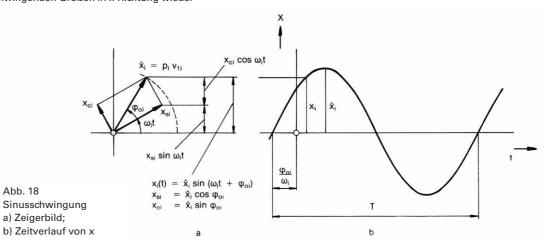
Der in Analogie zur erzwungenen Schwingung nach (2.1.10a) gemachte Exponentialansatz führt entsprechend den Gleichungen (2.1.17) und (2.1.18) im Falle der freien Schwingung zur Lösung

$$\mathbf{w}(t) = \mathbf{w}_{\alpha} \cos \omega t - \mathbf{w}_{\alpha} \sin \omega t = \hat{\mathbf{w}} \cos (\omega t - \underline{\phi}_{\alpha})$$
 (2.2.27)

ihm gleichwertig zur Seite steht der häufig verwendete Ansatz (2.2.2).

 $\mathbf{w}(t) = \mathbf{w}_a \sin \omega t - \mathbf{w}_a \cos \omega t = \hat{\mathbf{w}} \sin (\omega t - \underline{\varphi}_a)$

mit dem jetzt die weitere Berechnung durchgeführt werden soll.


Durch das Vorhandensein mehrerer Eigenfrequenzen heißen die Teillösungen tür die Schwingung mit ω = ω,:

$$\mathbf{w}_{i}(t) = \mathbf{w}_{si} \sin \omega_{i} t + \mathbf{w}_{si} \cos \omega_{i} t = \hat{\mathbf{w}}_{i} \sin (\omega_{i} t + \underline{\varphi}_{si}) = \mathbf{p}_{i} \mathbf{v}_{i} \sin (\omega_{i} t + \underline{\varphi}_{si})$$
(2.2.28)

und in Komponenten:

$$\begin{aligned} x_{i}(t) &= x_{si} \sin \omega_{i}t + x_{ci} \cos \omega_{i}t = \hat{x}_{i} \sin (\omega_{i}t + \phi_{otaj}) = p_{i}Y_{si} \sin (\omega_{i}t + \phi_{oi}) \\ y_{i}(t) &= y_{si} \sin \omega_{i}t + y_{ci} \cos \omega_{i}t = \hat{y}_{i} \sin (\omega_{i}t + \phi_{otyj}) = p_{i}Y_{2i} \sin (\omega_{i}t + \phi_{oi}) \\ &\cdots \\ \phi_{yi}(t) &= \phi_{ysi} \sin \omega_{i}t + \phi_{ysi} \cos \omega_{i}t = \hat{\phi}_{yi} \sin (\omega_{i}t + \phi_{oryj}) = p_{i}Y_{si} \sin (\omega_{i}t + \phi_{oi}) \\ \phi_{zi}(t) &= \phi_{zsi} \sin \omega_{i}t + \phi_{zsi} \cos \omega_{i}t = \hat{\phi}_{zi} \sin (\omega_{i}t + \phi_{orzj}) = p_{i}Y_{si} \sin (\omega_{i}t + \phi_{oi}) \end{aligned} \tag{2.2.28e}$$

Stellvertretend für alle Koordinatenrichtungen des starren Körpers gibt die Abb. 18 anschaulich die mit der Eigenfrequenz ω, schwingenden Größen in x-Richtung wieder

Weg-Zeit-Gesetz der freien (ungedämpften) Schwingung des starren Körpers

Der Faktor p, ist zunächst eine unbestimmte Normierungsgröße. Er muss selbstverständlich für alle mit derselben Frequenz ω, schwingenden Koordinaten gleich sein, da sich sonst die durch v festgelegten Amplitudenverhältnisse ändern würden. Diese unterscheiden sich nur durch einen konstanten Faktor voneinander, woraus durch Ausklammern Gleichheit aller Phasenwinkel φ_{α} folgt. Das Gleichungssystem (2.2.28) stellt, wie gesagt, nur Teillösungen dar. Dabei ist i die Ordnung der Eigenschwingung. Zur Gesamtlösung gelangt man durch Überlagerung aller Teillösungen:

$$\mathbf{w}(t) = \sum_{i=1}^{6} p_i \mathbf{v}_i \sin(\omega_i t + \varphi_{oi})$$
 (2.2.29)

und den Komponentengleichungen (2.2.29a-f):

Ableitung der Gleichung (2.2.29) nach der Zeit liefert den zugehörigen Geschwindigkeitsvektor

$$\dot{\mathbf{w}}(t) = \sum_{i=1}^{6} p_i \omega_i \mathbf{v}_i \cos(\omega_i t + \varphi_{0i}) \tag{2.2.30}$$

mit den Komponentengleichungen (2.2.30a-f):

Aus den allgemeinen, zeitabhängigen Lösungen (2.2.29) und (2.2.30) ergeben sich definierte Schwingungsverläufe des starren Körpers dann, wenn sein Bewegungszustand zur Zeit t = 0 bekannt und mindestens eine Zustandsgröße (Auslenkung oder Geschwindigkeit) ungleich Null ist.

Mit den Anfangsauslenkungen x(0), y(0), z(0), φ₋(0), φ₋(0) und φ₋(0) sowie den entsprechenden Anfangsgeschwindigkeiten gehen die Gleichungen (2.2.29a- f) und (2.2.30a-f) über in:

$$\begin{aligned} x(0) &= p_1 v_{11} \sin \phi_{o1} + p_2 v_{12} \sin \phi_{o2} + \\ y(0) &= p_1 v_{21} \sin \phi_{o1} + p_2 v_{22} \sin \phi_{o2} + \dots + p_6 v_{26} \sin \phi_{o6} \\ &\dots \\ \phi_y(0) &= p_1 v_{51} \sin \phi_{o1} + p_2 v_{52} \sin \phi_{o2} + \dots + p_6 v_{56} \sin \phi_{o6} \\ \phi_z(0) &= p_1 v_{51} \sin \phi_{o1} + p_2 v_{52} \sin \phi_{o2} + \dots + p_6 v_{56} \sin \phi_{o6} \\ \phi_z(0) &= p_1 v_{61} \sin \phi_{o1} + p_2 v_{62} \sin \phi_{o2} + \dots + p_6 v_{66} \sin \phi_{o6} \\ \end{aligned}$$
 bzw.
$$(2.2.31a-f)$$

SCHWINGUNGSTECHNIK (ANHANG)

Weg-Zeit-Gesetz der freien (ungedämpften) Schwingung des starren Körpers

In beiden Gleichungssystemen sind bis auf die Produkte p_i sin φ_{oi} und p_i cos φ_{oi} alle Größen bekannt. Die 2 mal 6 Unbekannten p_i und φ, müssen den Anfangsbedingungen genügen. Sie können aus obigen 12 Gleichungen berechnet werden, die sich in Matrixnotation folgendermaßen schreiben lassen:

und für die Geschwindigkeiten gilt:

 $VU^{1/2} \cdot \mathbf{p} \cos \varphi_0 = \dot{\mathbf{w}}(0)$ woraus folgt: $\mathbf{p} \cos \varphi_0 = (VU^{1/2})^{-1}\dot{\mathbf{w}}(0)$

Mit $\mathbf{q}_s = \mathbf{p} \sin \varphi_0$ und $\mathbf{q}_s = \mathbf{p} \cos \varphi_0$ erhält man schließlich die bekannten Beziehungen

$$\mathbf{p} = \sqrt{\mathbf{q_s}^2 + \mathbf{q_c}^2} \qquad \sin \underline{\phi}_o = \frac{\mathbf{q_s}}{\sqrt{\mathbf{q_s}^2 + \mathbf{q_c}^2}} \qquad \cos \underline{\phi}_o = \frac{\mathbf{q_c}}{\sqrt{\mathbf{q_s}^2 + \mathbf{q_c}^2}}$$

Weg-Zeit-Gesetz der freien (ungedämpften) Schwingung des starren Körpers

Im Ruhezustand halten die Federkräfte den statischen Belastungen das Gleichgewicht. Alle Lasten greifen im Schwerpunkt an. Ist dies nicht der Fall, so ist stets eine Zerlegung der betreffenden Kraft in Komponenten parallel zu den Systemachsen und ihre Verschiebung in den Schwerpunkt möglich, wenn die dadurch entstehenden Versetzungsmomente gleichzeitig drehsinnkonform als Lastgrößen angesetzt werden. Für verschwindende Geschwindigkeiten und Beschleunigungen reduziert sich die Gleichung (1.0.1) auf

$$\mathbf{K}\mathbf{w} = \mathbf{f} \tag{2.3.1}$$

 $\mathbf{w} = \mathbf{K}^{-1}\mathbf{f}$ (2.3.1)woraus sich die unbekannten Verschiebungen ergeben.

Die Berechnung erfolgt ganz analog zum Abschnitt 2.1, mit dem Unterschied, dass die Elemente K_{ik} mit statischen Steifigkeiten zu bilden sind und die Belastungen konstante, also zeitinvariante Größen darstellen. Insbesondere interessieren jetzt vorwiegend Massenpunktund Lagerverschiebungen, deren Ermittlung mit den Gln. (2.1.19a-c) genauso möglich ist, sobald die Schwerpunktverschiebungen x, y und z sowie die Achsenverdrehungen ϕ_{y} , ϕ_{y} und ϕ_{z} vorliegen.

Nicht zuletzt aus den im Abschnitt 2.2 diskutierten Gründen sollte man bestrebt sein, elastische Lagerungen möglichst so auszulegen, dass alle Lager die gleiche statische Einfederung haben und somit Schrägstellung des zu lagernden Objektes vermieden wird. Eine hierfür wichtige Bedingung ist nach Gleichung (2.2.11):

$$\Sigma \mathbf{k}_{xx} \cdot \mathbf{A} = \mathbf{0}$$

Bei Gleichheit aller Federsteifigkeiten k., muss dann die Summe der negativen Längskoordinaten (- A) gleich der Summe der positiven

Das Gleichungssystem (2.3.1) verlangt im Hinblick auf seine Anwendbarkeit nur die Erfüllung der bereits zitierten Bedingung, dass die Lagerung ausschließlich aus linearen Federn besteht, deren Achsen parallel zu den Koordinatenachsen verlaufen. Sind nun asymmetrische Verhältnisse gegeben, erfolgt die Berechnung ebenso zuverlässig wie bei quasisymmetrischer Lagerung.

Ottersweier, im Februar 1989 C. Pongs (Dipl.-Ing.)

Literaturhinweise

 $\label{eq:melting} \textit{Meltzer, G.; Kirchberg , S.: Schwingungs- und K\"{o}rperschallabwehr bei Maschinenaufstellungen.}$

Dresden: ZIAS, Schriftenreihe Arbeitsschutz, Heft 45

Fischer, U.; Stephan, W.: Schwingungen.

Birkhäuser Verlag

Holzweißig, F.; Dresig, H.: Lehrbuch der Maschinendynamik.

Springer-Verlag

Krämer, E.: Maschinendynamik.

Springer-Verlag

Gasch, R.; Knothe, K.: Strukturdynamik, Band 1: Diskrete Systeme.

Springer-Verlag

Knaebel, M.: Technische Schwingungslehre, B. G. Teubner

Battermann, W.; Köhler, R.: Elastomere Federung. Elastische Lagerungen.

Verlag von W. Ernst und Sohn

Göbel, E. F.: Gummifedern. Berechnung und Gestaltung.

Springer-Verlag

Waller, H.; Krings, W.: Matrizenmethoden in der Maschinen- und Bauwerksdynamik.

Bibliographisches Institut

Dietrich, G.; Stahl, H.: Matrizen und Determinanten und ihre Anwendung in Technik und Ökonomie.

Verlag Harri Deutsch

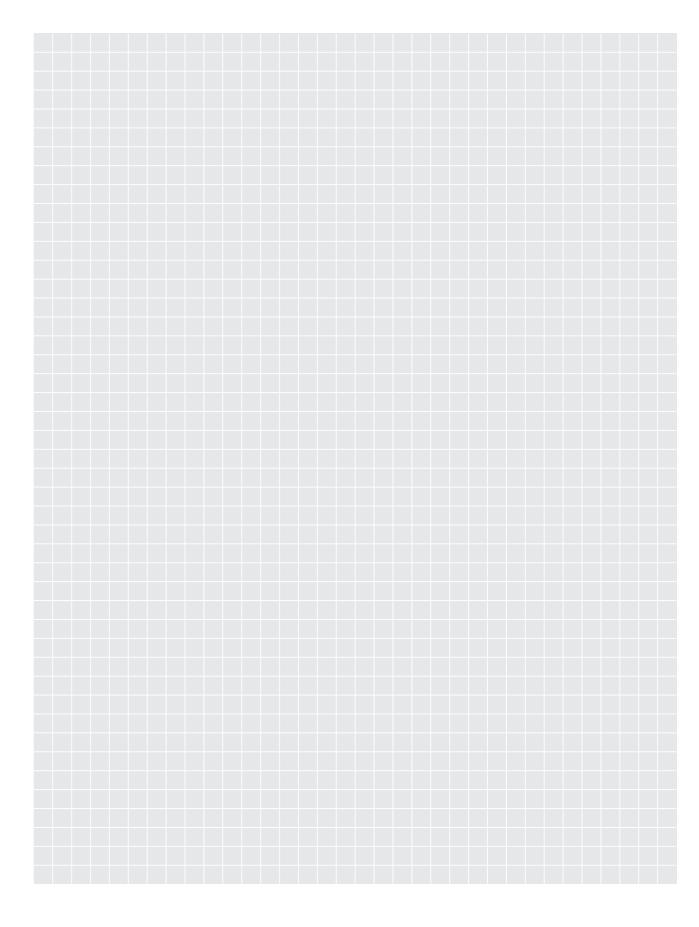
Spezielle Literatur für die elektronische Berechnung

Engeln-Müllges, G.; Reutter, F.: Formelsammlung zur Numerischen Mathematik. Mit Standard-Fortran 77-Programmen.B. I. Wissenschaftsverlag

Von den gleichen Autoren, im gleichen Verlag erschienen Programme zur Numerischen Mathematik in den Programmiersprachen: BASIC, PASCAL, C, TURBO-BASIC, PL/1, MODUIA-2 und APL.

Dankert, J.: Numerische Methoden der Mechanik.

Springer-Verlag


Brebbia, C. A.; Ferrante, A. J.: Computational Methods for the Solution of Engineering Problems.

Pentech Press Umited, Plymouth

Diese technische Information ist urheberechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrages, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung der Informationsschrift oder von Teilen davon ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der Fassung vom 24. Juni 1985 noch zulässig.

Mit freundlicher Unterstützung von Elastometall.

Hauptsitz Reutlingen

Tübinger Str. 2–6 72762 Reutlingen Tel.: +49 7121 323-0

kundenservice@reiff-gruppe.de

REIFF TECHNISCHE PRODUKTE GMBH

DEUTSCHLAND

Niederlassung Leipzig

Fraunhoferstraße 8 04178 Leipzig Tel.: +49 34205 776-0 leipzig@reiff-gruppe.de

Niederlassung Chemnitz

Otto-Schmerbach-Straße 35 09117 Chemnitz Tel.: +49 371 26 78-0 chemnitz@reiff-gruppe.de

Niederlassung Wallau

Nassaustraße 19b 65719 Hofheim-Wallau Tel.: +49 6173 60 04-0 info@reiff-gruppe.de

Niederlassung Offenburg

Industriestraße 15 77656 Offenburg Tel.: +49 781 9 69 18-0 offenburg@reiff-gruppe.de

Logistikzentrum und Ladengeschäft

Allmendstraße 6 72770 Reutlingen-Betzingen Tel.: +49 7121 323-1300 logistik@reiff-gruppe.de

INTERNATIONAL

ROLLER-TECH S.à.r.l.

4385 Ehlerange Luxemburg www.roller-tech.eu

ROLLER BELGIUM SPRL

4040 Liège/Herstal 1400 Nivelles Belgien www.roller-tech.eu

REIFF Technical Products Co., Ltd.

Duhui Road No. 1835 201108 Shanghai China www.reiff-tp.cn

Hauptsitz Reutlingen

Tübinger Str. 2–6 72762 Reutlingen Tel.: +49 7121 323-0

kundenservice@reiff-gruppe.de

REIFF TECHNISCHE PRODUKTE GMBH

DEUTSCHLAND

Niederlassung Leipzig

Fraunhoferstraße 8 04178 Leipzig Tel.: +49 34205 776-0 leipzig@reiff-gruppe.de

Niederlassung Chemnitz

Otto-Schmerbach-Straße 35 09117 Chemnitz Tel.: +49 371 26 78-0 chemnitz@reiff-gruppe.de

Niederlassung Wallau

Nassaustraße 19b 65719 Hofheim-Wallau Tel.: +49 6173 60 04-0 info@reiff-gruppe.de

Niederlassung Offenburg

Robert-Bosch-Str. 2 77656 Offenburg Tel.: +49 781 9 69 18-0 offenburg@reiff-gruppe.de

Logistikzentrum und Ladengeschäft

Allmendstraße 6 72770 Reutlingen-Betzingen Tel.: +49 7121 323-1300 logistik@reiff-gruppe.de

INTERNATIONAL

ROLLER-TECH S.à.r.l.

4385 Ehlerange Luxemburg www.roller-tech.eu

ROLLER BELGIUM SPRL

4040 Liège/Herstal 1400 Nivelles Belgien www.roller-tech.eu

REIFF Technical Products Co., Ltd.

Duhui Road No. 1835 201108 Shanghai China www.reiff-tp.cn